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4 0 INTRODUCTION TO FINITE ELEMENT METHODS

0 Introduction to Finite element methods

Let Q be a bounded open domain in R? and 99 = I'p N T'y its Lipschitz continuous boundary.

Consider the simple model problem:

—Au+b-Vut+cu = f in €,
(D) u = 0 on I'p,
% =g on I'y

where I'p # 0 and n is the unit normal vector to Gy .
Let V = H} () where

HLH(Q)={ve HY(Q) : v|g, =0}
Variational Formulation : Find u € V = H},(Q) such that
(V) a(u,v) = F(v) == (f,v) + (g, v)gy, YveEV
where the bilinear form a(-,-) is given by
a(u,v) = (Vu, V).

Let V}, be a finite dimensional subspace of V = H,(Q).
Galerkin Approximation : Find u; € V}, such that

(Vi) ap(un,vy) = Fp(vn), Vop € Vy,

where a,(-,-) and Fp(+) are appropriate approximates of a(-,-) and F(-), respectively.

The existence and uniqueness of the solution to (V) or (Vj) can be verified by Lax-Milgram
Lemma under conditions of the ellipticity and continuity of a(-,-) or ap(-,+), and the continuity
of F(-) or Fp(-).

Let {¢; }jV:hl be a basis of V,. Then, for any u;, € V4, it can be represented by up = Zé\f:’zl ujd;.

By substituting u;, and replacing v by ¢; in (V},), we have the following linear system
AU = F,

where A(i, j) = an(9j, ¢:), F(i) = Fn(¢i), U(i) = u;.

Using direct methods or various iteration methods, we solve AU = F'. (Jacobi, Gauss-Seidel,
CGM, Multi-Grid, GmRes)

According to the finite dimensional space V3, we have the error estimates ||u — upljo and

|lu — up||1. (Interpolation errors, Projection errors, Strang Lemma)



1 Preliminaries

1.1 Hilbert and Banach spaces
Let V be a (real) linear vector space.

Definition (Inner product). A scalar product (or an inner product) on V is a linear map
(-,-) : V x V — R such that
(a) (w,v) = (v,w) Yw,weV,
(b) (v,v) >0 VYovelV,
(c) (v,v)=0iff v =0.

Definition (Norm). A norm isamap || -| : V — R such that

a) [[v]| >0 VYvelV,

(a)

(b) flevll = lef vl VeeR, vel,

(©) [lo 4wl < lvf| + lwl] Vv,weV,
)

(d) vl =0iff v =0.

Definition (Norm equivalence). Two norms ||| and ||| ||| on V are equivalent if there exists
C1,C5 > 0 such that
Clfo]| < [[lo]]| < Cafjvll Vv eV

Definition (Banach, Hilbert Spaces). A liner space V equipped with a scalar product (or a
norm) is called pre-Hilbert (or normed) space.
If any Cauchy sequence in a pre-Hilbert (or normed) space V' is convergent, then V is

called a Hilbert (or Banach) space.
(Schwarz inequality). In any Hilbert space, the Schwarz inequality holds:
|(w, )| < [Jw[|{]o]] Vw,ve V.

Definition (Dual Spaces). Let (V.|| - |lv) and (W,|| - |lw) be normed spaces. Denoted by
L(V; W) the set of linear continuous functional from V' into W.

For L € L(V; W), define the norm:

[ Lol[w

HLHL(V;W) = sup .
veV HUHV
v#£0

Then, £(V; W) is a normed space.



6 1 PRELIMINARIES

e If IV is a Banace space, then £(V; W) is also a Banach space.
o If W =R, then the space L(V;R) is called the dual space of V' and denoted by V'.

e The bilinear form (-,-) from V' x V into R defined by (L,v) := L(v) is called the duality
pairing between V' and V.

(Weak convergence).
A sequence {v,} in V converges to v weakly if (L,v,) — (L,v) as n—oo forall L eV’
(Weak* convergence).

A sequence {L,} in V' converges to L weakly* if (L,,,v) — (L,v) as n— oo forallveV.

1.2 L?(Q) Spaces

Let Q be an open set in R? and let 1 < p < oo.
Define

1
P
ol = ( /Q \v(x)lpdx> Ci<p<os,

V]| poe (@) := supf|v(z)] : = € Q}.

Denote by
LP() = {v : [[v]|Le(q) < oo}

The space L?(Q2) is a Hilbert space, endowed with the scalar product

(w,v)2(q) = /Qw(m)v(a:) dx.
Denote by
=1 llo=1lloe =1 llr2@: )= )o=()oa= ()20

(Holder Inequality). For w € LP(2), v € LI(Q) with % + % =1,1<p< o0,

‘ /Q w(z)v(z) do

< Jwllze) V]l a(e)-
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1.3 Distribution

Let C§° := D() be the space of infinitely differentiable function having compact support.

Denote by, for o = (a1, ,aq) o >0,

dlely
D= —— D(Q)
U= G ggta VPO

where |a] = a1 + -+ + ag.

Definition (Distribution). A sequence v, € D(f2) converges to v € D(Q) if there exists a
compact subset K C 2 such that v, vanishes outside K for each n and for every a, D%v,
converges to D%v uniformly in 2.

Denoted by D'(€2) the dual space of D(2) and its elements are called distribution which

is continuous in the above sense.
e Each function w € LP(Q) is a distribution:
v— / w(x)v(z)dx, Vv e D).

Q

e The Dirac functional 6 does not belong LP(2) but it is also a distribution such that
[e.9]
v — 6(v) = / S(tyo(t) dt = v(0), Vo € D(Q)
—00

where the Dirac delta function is defined as follows. Define

1
5- —T <t <
sn—q > CTrsT
0 t<—1, t>T71).
Then
/ 5.(t) dt = 1.
Let
o(t) = lin% d-(t).
Then

/ooé(t)dt—l and §(t) =0 (t40).

c.f. Using the mean value theorem yields

/Oo Sty dt = tim [ 6-(t)u(t) dt = lim - / o(t) dt = lim v(t*) = v(0).

0 ) _ T—0 2T —r T—0
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Definition (Derivative of a distribution). Let o be a non-negative multi-index and L € D'(12).
Then D*L is the distribution defined as
(DL, v) := (=1)l*l(L, D), Vv e D).
e A distribution is infinitely differentiable.

e When L is a smooth funtion, the derivatives in the sense of distribution coincides with the

usual derivatives.

e Define the Heaviside funtion H as

1, x>0,
H(z) = 0 z <0

Then H' = § in the distribution sense,
o
(H' v) = —/ H(t)' (t)dt = / V' (t)dt = v(0) = (0,v), Yve D).
R 0

1.4 Sobolev Spaces

Define
WkP(Q) .= {v € LP(Q) : D®v € LP(Q), |a| < k}

and the corresponding norms

RS

”ka,p,Q = Z ||Dav||;zp(g) ) 1 S b < o,
|| <k

[0]lk,00,0 = mas ID%0 70 )

and the corresponding semi-norms

Sl

‘U’km,ﬂ = Z HDQUHI;J:D(Q) ’ 1 S p < 00,
|a|=k

_ a, ||P
|V]k,00,0 = \Igfi}l(c [ D] o ()"
Then, the space W*P(Q) is a Banach space.

When p = 2, denote by H¥(Q) := W*2(Q).
The space H¥(Q) is a Hilbert space with respect to

(W, V)0 = Z (D%w, D%v)o.0.

|| <k



1.4 Sobolev Spaces

Denote by
WEP(Q) = C(Q)  w.r.t. the norm || - || p.0,
Wwkv (Q) = the dual space of Wf’p(ﬂ),
H7*(Q) = W%2(Q) = the dual space of HY(),
where (f,v)
, U
Hf”w—kvp’(ﬁ) = Sl,ip W
veWy? (@) 1MIwgP(@)
v#0
Define

H(div;Q) = {v e L} Q)¢ : V-v e L*(Q)},

equipped with the norm

N |=

IVIlmdive) = (IVIGa + 1V - vI§a)

(Ws»(I') : T = 9Q).

[vllop.r = </F [o(@)[? dS(ﬂf)); in WOP(I) == LP(T),

1

||f||,37%7p,11 = ’UEVII/I}E’(Q) HUHS,p,Q 1mn Ws p’p(r)'
vlp=f

The space H_%(F) is the dual space of H%(F) = W%’Q(F) and

(f,v)

Tollsr

IFlyr = sup
veH2(T)
v#0

Denote by C°(€2) the space of all continuous functions in © and

Q) : 0%uare bounded and uniformly continuous on QV|a| < m},

(
C™(Q) = {u € C™(Q) : 9w are Lipschitz continuous in Q Vl|a| < m},

equipped with the norms

ul|miey = max  sup |0%u(x
ooy = . sup 0"u(o).

|0%u(z) — 0%u(y)|
Jullcma @y = ey + max sup '
cm1(Q) cm€) 0§|a\§mx,g§9 |z —yll
TFY
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(Dense of Sobolev spaces).
1. D() = C(Q) is dense in WFP(Q), (1 < p < oo, k > 0).
2. D(Q) = C§°(Q) is dense in LP(Q), (1 < p < c0).
3. C*®(Q) is dense in W*P(Q), (1 < p < oo, k > 0) if Q is Lipschitz domain.

4. C*(Q) is dense in W*P(Q), (1 < p < oo, k > 0) if Q is Lipschitz domain.

1.5 Some Results

Definition (Lipschitz continuous). A function f is Lipschitz continuous on D if there exists
L > 0 such that
[f(@) = fy)| < Lz —y| Va,yeD.

Definition (Lipschitz Domain). A domain Q in R is called a Lipschitz domain if there are

bounded open sets G1, - -+ , Gk such that
i) 09 C Ué‘-‘zl Gj,
ii) for every j, G; N 0N is the graph of a Lipschitz continuous function ¢; satisfying
Gj Nepip; C Q.
For examples, triangles, parallelograms, discs, annuli, parallelepipeds, balls, polygons and

polytopes are all Lipschitz domains.

(Trace Theorem). Let Q be a bounded open set of R? with Lipschitz continuous boundary 9

and let s > %
(a) There exists a unique linear continuous map 7o : H*(Q) — H* 1/2(9Q) such that
Yov = v|gq for each v € H*(2) N CY(£).

(b) There exists a unique linear continuous map Ro : H*~1/2(99) — H*(Q) such that
YoRop = ¢ for each ¢ € H*~1/2(9Q).

c.f. If X is a Lipschitz continuous subset of 02, then v has the analogous results. And

1-1 1
lollroa) < Cllolmd It o), 1<p < oo

(Normal Trace Theorem). Let Q be a bounded open set of R? with Lipschitz continuous

boundary 02 and let s > %

(a) There exists a unique linear continuous map ~* : H(div; Q) — H~/2(9Q) such that
v = (v - n)|gn for each v € H(div; Q) N CO(Q)%.
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(b) There exists a unique linear continuous map R* : H~1/2(9Q) — H(div; Q) such that
Y*R*p = ¢ for each ¢ € H-1/2(5Q).

Note that
Ho(div; Q) == Coo(yd VY,

If 09 is Lipschitz continuous,
HY(Q) = {ve H(Q) : yv =0},
Hy(div; Q) ={v € H(div;Q) : v*v = 0},
HL(Q) = {v e H(Q) : yxv = 0}.

(Poincaré Inequlity). Let  be a bounded connected open set of R? and let ¥ be a (non-empty)

Lipschitz continuous subset of 9€2. Then there exists a constant Cq > 0 such that
/ lv(z)|?dx < Cq / |Vo(z)?dz, Yo € HL(R).
Q Q

(Green Formula and Divergence Theorem).
For all w,v € HY(Q),

T%vcm— /wax]da@%—/mzwvnjds.

If we H(div;Q), v € H(Q),

/(divw)vdaz = —/ w - Vvdx+/ (w-n)vds.
Q Q B9)
(Sobolev Embedding Theorem).

Let Q be an open set of R? with Lipschitz continuous boundary 92, and s > 0, 1 < p < co.
Then, the continuous embeddings hold:

(@) If 0<sp<d, W (Q)CLV(Q), p=%.

d=2,p=2 : HY*Q)cLYQ)
d=3,p=2 : HYQ)cC L)

(b) If sp=d, WP(Q)C LIQ), p<q<oo.
d=1,p=2 : HY*Q)cLiQ), q¢q>2,
d=2,p=2 : HYQ) cCLiQ), ¢>2,
d=3,p=2 : H3*Q)cLiQ), q¢q>2,

(c) If sp>d, WP(Q)cC Q).
d=1,p=2 : HQ)cCC'Q), s>1/2,
d=2,p=2 : HQ)CC'Q), s>1,

d=3,p=2 : H(Q) cC'Q), s>3/2.
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Definition (Compact Operator). Let X and Y be Banach spaces.

An operator T : X — Y is compact if
i) T is continuous,

ii) for given any bounded sequence z, in X, there exists a subsequence z,, such that

T'(xp,) is convergent in Y.

Note. Let V is compactly embedding to W. Then,

i) if uy,, is bounded in V/, then there exists a subsequence u,, which is strongly convergent
to a function u in W.

ii) u, converges to u weakly in V' = w,, is bounded in V' and then there exists a subse-

quence uy, which converges to u in W.

(Compact Sobolev Embedding Theorem).
Let Q be an open set of R? with Lipschitz continuous boundary 92, and s > 0, 1 < p < co.

Then, the following embeddings are compact:

(@) I 0<sp<d, WP(Q)CLIQ), 1<q< 2.
d=2,p=2 : HY*Q)CLIQ), 1<g<4,
d=3,p=2 : HY Q) CLIQ), 1<qg<6,

(b) If sp=d, W*P(Q) C L), p<qg<oo.
d=1,p=2 : HY?Q)cLiQ), 1<q< oo,
d=2,p=2 : HY Q) CLIN), 1<q< o0,
d=3,p=2 : H*?Q)cLiQ), 1<q<oo,

(c) If sp>d, W=P(Q)c C%Q).

d=1,p=2 : HQ)cC' ), s>1/2
d=2,p=2 : H(Q)cCC'Q), s>1,
d=3,p=2 : H(Q) cC' ), s>3/2

(d) If p>2%  LP(Q) C HY(Q).

(e) H*(Q) c H1(Q), k> 0.

(Gagliardo-Nirenberg Interpolation Inequlity).

1
1 3 PR
wax o) < (2 +2) " llE ol vo € 7,0

a<z<b
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(Interpolation Theorem).
Let Q be an open set of R? with Lipschitz continuous boundary 0. Let s; < s be real
numbers and r = (1 — 0)s; + 0s2, (0 < 6§ < 1). Then, there exists a constant C' > 0 such

that
[ollr < Clolli 0 lollg,, Vo e H2(Q).

527

(Gronwall Lemma for IBVP). Let f € L'(to,T) be a non-negative function, g and ¢ be con-
tinuous functions on [tg, 7.

If ¢ satisfies
t
pt) <gt)+ [ f(r)e(r)dr, Vtelto,T],
to

then

t t
o) <o)+ [ sen ([ s@ar) as el
In addition, if g is non-decreasing, then
¢
o(t) < g(t) exp </ f(7) dT) , VYt e [to, T].

c.f. We often use a form of

gm—ﬂm+4w@w,¢@zo
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2 Finite Element Approximation

2.1 Triangulation

Let Q ¢ R% d = 2,3 be a polygonal domain, i.e., £ is an open bounded connected subset such
that € is the union of a finite number of polyhedron.
Conside a finite decomposition

Q - UKG’]'}LK,
where

1. K is a polyhedron with the interior of K, Int(K), is non-empty;
2. Int(Kq)NInt(K2)= 0 for each distinct Ky, Ko € Tp;
3. if F =K NKy#0(K; # Ks), then F is a common face, side, or vertex of K, Ko;

4. diam(K)< h for each K € Tj,.

Here, Ty, is called a triangulation of Q.

From now on, we assume that for each K € 7},

A~

K:TK(K) with TK()A():BK)A(-FI)K

where K is a reference polyhedron and T is a suitable invertible affine map with a non-singular

matrix Bg.

(Triangle Finite Elements).
The reference polyhedron K is the unit d-simplex, i.e., the triangle of vertices (0,0), (1,0),
(0,1) when d = 2, or the tetrahedron of vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1) when d = 3.

As a consequence, each K = Tk (K) is a triangle or tetrahedron.

(Parallelepipedal Finite Elements).
The reference polyhedron K is the unit d-cube [0, 1]¢.

As a consequence, each K = Tk (K) is a parallelogram when d = 2 or a parallelepiped

when d = 3.

If for each K € 7, the matrix Bg defining the affine transformation Tk is diagonal, the

triangulation is made by d-rectangles (Rectangular Finite Elements).

(Quadrilateral Finite Elements).
Dealing with general quadrilaterals or hexahedrons would require admitting that each
conponent of the invertible transformation Ty is no longer an affine map but a linear

polynomial with respect to each single variable x,--- ,x4. See Ciarlet.
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2.2 Piecewise Polynomial Subspaces

Denote by P; the space of polynomials of degree less than or equal to & and Qf the space of

polynomials of degree less than or equal to k& with respect to each variable x1,--- , x4.

d+k
dimPk:< i ) dim Q; = (k + 1)4, Py C Qi C Py

Define a space of vector polynomials
Dy, = (Pp_1)? @ xPy_y, (k>1),

where x € R? is the independent variable.

(d+k—2)!
EICE

dimDy, = (d + k) (Pe_1)? Cc Dy C (Pp)2
Define the space of triangular finite elements:
Xp =X ={v, €C°(Q) : | €Pp, VK € Tp}, k> 1,
or the space of parallelepipedal finite elements:
Xp=XF:={v, € C%Q) :vp|g o Tk € Qi, VK € Ty}, k> 1.
Note that X¥ ¢ H*(Q), Vk > 1.

Proposition 2.1. A function v belongs to H*(Q) if and only if

(a) v|x € HY(K) for each K € Ty,

(b) the trace of v|k, is equal to the trace of v|k, on F for each common face F = K1NKas.

Proof. Using (a), define the function w; € L?(€) such that
w]|K:DJ(’U|K)1 Kel];hj:lv"'vd'

By the Green formula, for each ¢ € D(2),

wip = /w‘soz— /(U|K)D'90+ /UIKSOHK,»

where ng is the unit normal vector on K. Since ¢ is vanishing on 02

and ng, = —ng, :=n on a common face F' = K; N Ky, by (b) we have

@) [ue=—[ D+ Y [l —vllen, (=—/Qijso)-
F
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Hence, w; = Djv € L*(Q) and v € H'().

If v € HY(Q), then we have
[ il < [ (Dl < o0
K Q
which implies (a). With w; = Djv, from (2.1)

Z/F(U|K1 —vlK,)pn; =0 YoeD),j=1,---,d.
F

This completes the proof (b). O

Define the space for vector functions:
WF.={v, e Hdiv;Q):vplx €D, VK €T}, k> 1.

Proposition 2.2. Let v :Q — R? be such that v|x € H'(K)? for each K € Tj,.
Then, for K1, Ky € Ty,

(a) ve Hdiv;Q) if and only if (b)n-v|g, =n-v|g, on F = K; N K.

i.e., The traces of the normal components are the same on each common face F' = K1 NKy
for K1, Ko € Ty,

Proof. Define w € L*(Q) such that
wlg:=V-(vlg) VK €T,

By the Green formula, if (b) holds, then for each ¢ € D(Q),
<V-V,<P>——/V'Vw——Z/(V!K)-WD
Q < JK
=Y [V o= [ vl -0 vi)e = [ e
7 JK  JF Q

Thus, V- v =w € L*(Q) and v € H(div; ).

(2.2)

If v e Hdiv;Q), w := V-v € L*Q). Since v|g € H'(K)9, by Trace theorem the trace

on F' is well defined, and using (2.2) we obtain
S [ vl —novlile =0 Ve D).
o JF

Hence, (b) holds. O
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k=1 k

8

2 k

Figure 1: Degrees of freedom for triangular elements in 2D

2.3 Degrees of Freedom and Shape functions

In the constructing a basis for the space X*, an important point is concerned with the choice
of a set of degrees of freedom on each element K (i.e., the parameters which permit to uniquely

idetify a function in Py, Qi or Dy.

2.3.1 The Scalar Case: Triangular finite elements

In two dimensional space, to identify vp|x in X ,’f , when k£ = 1 we have to choose three degrees
of freedom on each element K, with the additional constraint that v, € C°(Q2). The simplest
choice is that of the values at the vertices of each K.

Otherwise, if we consider
th = {’Uh € LQ(Q) : 'Uh|K eP,VK € 7;1},

we are free to choose the degrees of freedom on K as the values at three arbitrary points(not

necessarily coincident with the vertices).

(Discontinuous FEM). One can take as nodes three internal points, or else the midpoints of

each side without continuity at the midpoint.

(Nonconforming FEM). One can take as nodes at the midpoints of each side with continuity
at the midpoints.
When k£ = 2, we assume that the element degrees of freedom in X }’f are given by the value
at the vertices and in the middle point of each side.
Denote the vertices of the triangle K by a’, i = 1,2,3, and the midpoints by a¥, i < j,
i,j=1,2,3.
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k=1 k=2 k=3

Figure 2: Degrees of freedom for triangular elements in 3D

Proposition 2.3. A function p € Py is uniquely determined by the siz values p(a'), 1 <i < 3,
and p(a”), 1 <i < j<3.

Proof. Since the number of the degrees of freedom is equal to the dimension of Py(= 6), we
have only to prove that p(a*) = p(a*) = 0 then p = 0.
Note that the restriction of p over each side is a quadratic function of one variable vanishing

in three distinct points, hence p is vanishing over each side. Thus we can write

p(x) = epr(x)p2(x)p3(x),

where p;(x) are linear functions, each one vanishing on one side of K. Since p € Py, it
follows ¢ = 0. ]
This choice of degrees of freedom guarantees that v, € C°(£2), since the degrees of freedom

on each side uniquely identify the restriction of v on that side.

(Cubic elements k& = 3). In similar way, one can prove that the degrees of freedom for a cubic

triangle elements are given by ten values at the following nodes:
a. the three vertices
b. two other nodes on each side, dividing it into three subintervals of equal length

c. the center of gravity
When d = 3, it is not difficult to see that the degrees of freedom are the values at the nodes
indicated in Figure 3.
A basis for X }’f is now easily constructed. For the global set of nodes {a; };V:hl in Q, if p; € X ,{f
satisfies
¢i(aj) = 05, Vi, j=1,---,Np,
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then ¢; is called a shape function or nodal basis function corresponding to the node a;.

Let K be the reference triangle with three vertices a; = (1,0), ag = (0,1) and a3 = (0,0).
Denote by a4, a5 and ag the midpoints of a; through as.
In P; elements, i.e., continuous piecewise linear functions, the baricentric coordinate correspond-

ing to the reference triangle K is given by
3
AMl=2x, M=y, M=1—2x—y, and Z)‘izl'
i=1

In P, elements, i.e., continuous piecewise quadratic functions, the baricentric coordinate corre-

sponding to the reference triangle K is given by

= M2\ — 1 = Xa(202 — 1), 5= A3(2)\3 — 1), 6
P1=A(2M\1 — 1), ¢2 =22\ —1), ¢3=2A3(2X3—1) and qui 1
¢g = 41 A2, ¢5 = 42 A3, ¢6 = 4A3A1, i1

2.3.2 The Scalar Case: parallelepipedal finite elements

The reference square K = [0, 1]%.

Let us prove that a function in Qy is uniquely determined by its values at the nodes given

in Figure 3.

Proposition 2.4. Ifq € Qy (k=1,2,3) vanishes at the nodes, then q¢ = 0.

Proof. For the case of k = 1, the restriction of ¢ to each side is a linear polynomial of one

variable. Hence ¢ vanishes over each side and therefore it can be written as
q(x) = 611'1(1 - 1‘1)1'2(1 - 1‘2),

which implies ¢; = 0.

A similar argument applied to the cases k = 2 and k = 3 implies that ¢ has the form

q(x) = 02;101(% —x1)(1 —x1)xa(1 — z2), k=2,

or
1

a(x) = s (5 - xl)(g — o)1 — sl —23), k=3,

Since z37% ¢ Q2 and z{z3 ¢ Qj, it follows that ca = c3 = 0. O
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4 L
¢ [ ] L] )
=1 k=2 k=3

Figure 3: Degrees of freedom for parallelepipedal elements in 2D

2.3.3 The vector case

Let d = 2. Recall the space of vector functions:
WE ={vyc Hdiv;Q) : vi|g €Dy VK €T}, k> 1.

. ) . kK 1 2 3
On each, the dimension of Dy, is (k + 2)k, e.g., .
dim : 3 8 15

Also, it must hold that v, € H(div; ). Hence it is necessary and sufficient that
Il'Vh|K1 = l’l'Vh|K2 on F'= KN Kos.

(Ex 1). Prove that (n-q)|r € Py—1 and V- q € Py for each q € Dy.
The (Ex 1) suggests that k degrees of freedom can be given by the values of n - q at k distinct

points of each side. This is sufficient for the case k = 1.

Proposition 2.5. Let k =1,2,3. Assume that q € Dy, is such that n - q vanishes at k distinct

points on each side of K. Assume moreover that

(2.3) /qu—/qu—o (if k> 2)

and

(2.4) / r1q1 —/ Taq1 —/ 1492 —/ x2q2 =0 (only if k = 3).
K K K K

Then q = 0.
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Proof. Since (n-q)|r € Px_1, it vanishes on each side F' of K. By the Green formula and (2.3),
(2.4), for each ¥ € P;,_; we have

/\IJV~q:/V\IJ-q+/ Un-q =0,
K K oK

since VU € (Pr_3)? and k < 3. As V-q € Pj_y, it follows that V-q = 0 in K by
substituting ¥ =V - q.

For q € Dy, it can be written by q = pyp—1 + Xpj;_,, where py_1 € IP’%_I and p;_, is a
homogeneous function of degree k — 1 (function consisting of only terms of the highest

degree k — 1). Then, we have
0=V-q=V pr1+2p,_1 +x-Vpy_,
=V -pr1+2+k—1)p;_;.
Thus, p;_; € Pr_2 and so p;;_; = 0, and consequently q € ]P’%_l.
Since V- q = 0, we can find a polynomial w € Py (unique up to an additive constant) such
that (see Helmholz decomposition below)

q = (Dyw, —Diw).

Moreover, since (n - q)|rp = 0, we can assume that w is vanishing on each side F, and

consequently
w(x) = cop1(x)p2(x)p3(x),
where p;(x) are linear functions, each one vanishing on one side of K. If k = 1 or 2, then

by w € P, we have ¢y = 0 and this completes the proof for Kk =1 or 2. When k£ = 3, using
(2.3) and (2.4) we obtain for each r € P?

0= /Kq T = /K[(Dgw)rl — (Dyw)ry] = / w(Dary — Dirg).

K

Choosing r such that Dor; — Diro = ¢, it follows
2 _
Co/ p1p2ps = 0.
K
Thus, ¢g =0 and q = 0. O
(Helmholz decomposition). [ For a give q € L?(Q)?, it can be decomposed as
q=Vu+VxweH +H where Vxw=(Dyw, —Djw)

where
H={veH(div;) : V- v=0,(n-v)|r =0}
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and u € H'(Q)/R is the only solution of the Neumann’s problem
(Vu, Vi) = (q, V) Vue H(Q),
and w € H} () is the only solution of
(Vxw,Vxx)=(q—-Vu,Vxy) VxeHQ).]
Note that
(Vxw f)g = (w,Vir)xg  ifw=0ondK

where V1r = dor; — Dyry denotes the formal adjoint of V x.
The construction of a basis of W,’f is some how less evident than for X }’f

Let {a;} be the set of all nodes Q. Let us denote by

mj(v),j=1,---,Nip : the values (n-v)(a;)
my(v), £ =Ny +1,---,Np :the set of all K-moments of the function v.

Now, a basis of W,f is constructed by requiring that

2.4 The Interpolation Operator

Denote by
a; : the global nodes on (2,
a; i : the local nodes in K,
¢; : the corresponding shape function to a; in X ’,f .

Define a local interpolation operator 7[";(2

W’;((’U) = Zv(ai,K)qMK Yov e CO(K),

and define an interpolation operator 7% : C°(Q) — XF as

Np,
)|k = (v|k) VE €T veClQ). ie, mh(v):=) v(a)d:
i=1
Denote © = v o T for any v € H™(K), where T (X) = By (%) + b for each x € K.

Proposition 2.6. For anyv € H™(K), m > 0, we have 0 = voTx € H™(K), and there ezists
a constant C = C'(m,d) such that

~ _1
(a) |0],, g < ClIBx|™|det Bx|™2 [v|m,x Vv e H™(K),
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_ 1. N >
(b) [l < CIIBEH|™ | det Bk |2 [0],,, o V0 € H™(K),
where || - || is the matriz norm associated to the euclidean norm in R,

Proof. Claim (1)holds for smooth v.

Using the chain rule, with |o| = m
106l = [ Do < Bkl [ (D7) o Tk
= CHBKH?m/ |D*v|?|det By |~ dx

K
C||Bx | |det By |~ | D[ scdx

Summation gives the conclusion (1).
(2) is similary followed by using |®|;K = E|a‘:m||Da®||gj<. O
Define
hix = diam(K), pr = sup{diam(S) : S is a ball contained in K}.

The same quantities will be denoted by A and p when they are refered to the reference domain

K.

Proposition 2.7. The following estimates hold

h ~ h
IBxll < == and [|Bg'| < —.
PK

A~

Proof. We can write

1
| Bi || = supjg|=1|Bré| = BSUP\§|:p‘|BKf|-

For each ¢ satisfying |¢| = p, we find two points X, ¥ € K such that X — ¥ = £.
Since Bg& = TgX — TkY, we deduce |Bgé| < hy.
Hence ||Bg|| < %‘.
., -1 h
Similary, || B || < o O

Denote by

Using ¢; = ¢i o Tk,

Mg Mg

[mhc (0] =Y vlaik)(¢i o Tx) = Y 0(Tk (@) ds = mp (0).
i=1 i=1
Hence, in order to estimate for the seminorm [v — 7% (v)] o Tk in H™(K), we have to estimate

o — 7k (0) in H™(K).
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Proposition 2.8 (Bramble-Hilbert Lemma).

Let ¢ : H"1(K) — H™(K), m >0, k > 0 be a linear continuous mapping such that
i(p)=0 VpePy.
Then, for each © € H* 1 (K)

w@)‘mj{ < HZ||£(HI€+1(K);HM(K))pieI]‘IP:)Ek H{) +ﬁ”k+1,f{‘

Proof. Let & € H*(K). For any p € P}, we have (p) = 0.

Proposition 2.9 (Deny-Lions Lemma).

For each k > 0, there exists a constant C = C(k, K) such that

. ~ N N ~ k ks
ﬁléqﬂjfk 10+l 1 g SClOlgyy g YOEH H(K).

Proof. (Compactness argument)

Stepl) Let us prove that there exists a constant C' = C (K ) such that
. N RPNt
) Mollgr i < CUE,, 5+ Siareslic D702
for each & € H*"1(K). We proceed by contradiction. If (1) doesn’t hold, thenwe could
find a sequence o, € H**1(K) such that
) Nosllgys o =1
and
(3) ’@8|z+1,f(+2|a|§k(ff{ Paﬁs)2 < S%
Since the immersion H**1(K) < H¥(K) is compact, we can select a subsequence, still
denoted by oy, strongly convergent in H* (K’ ).
As a consequence of (3) o is indeed a Cauchy sequence in H*+1(K), therefore a function
& exists such that o5 converge to & in H**1(K) and lolly1 2 = 1-
Moreover, by (3) [ D% =0 for |a| < k and D% = 0 for |a| = k + 1. This last relation

implies that @ € P, and then & = 0. this is contradiction to |||, ,; z = 1.

Step2) For each & € H*'(K) we can construct a unique ¢ € Py such that

/DO“:—/D%, Vla| < k.
K K
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Hence from (1) applied to © + ¢ that D*(hatv + hatq) = 0, we obtain

ﬁierlgk 104 Pllesa,z SN0+ dllega iz < ClO+dleq i = Clolgy &
O

Theorem 2.10 (Local interpolation error). If0<m <[+ 1, 1 <1 <k, then there exists a
constant C = C(K, ﬂ];(,l,m d) such that
l+1
v = 5 (V) lm, i < CT ol Vo e HPY(K).
K

Note that high order interpolation on v do not give, in principle, better error estimates if

v 18 not regular enough.

Proof. First of all, let us remark that the Sovolev embedding theorem yields H'*1(K) C CY(K)
for k > 1. Hence the interpolation operator 7% is well-defined in H'*1(K). By previous

proposition,
_ 1. N
o =7 (V)lmx < CBg ™ |detBx|? [6 — 7 (9)],,, &
hm 1~ . A~ k
< C —— |detBg |2 [(0)],, g {=1—Tk.
Since
E@Dlic < 1] 0 1o+ Pl e < Ol i
_1
< C|Bg|™ |detBk|™2 [v]g+1,K
k+1
< Ak—i—l \det Brc| ™2 [v]41,-
Hence v — 75 (v )|mK<C—|v\k+1K O

Remark (L*-interpolation error).

(a) The similar results hold for interpolation in the Sobolev space W*T1P(Q) p € [1, c0].
(see Ciarlet)
(b) For 1<(<k,0<m</(+1-% d=23,
hZJrl

v — mje (v )m,co,k < C [meas(K)]™ 3 o1 Yue HAYY(EK).

K
(To prove) Using Theorem 2.10, H1(K) € W™ (K), 0 < m < |+1—d/2 and that

IDv]lso,ic < CIBR ™ D0l 0 ol =m,

I+1

. C 1
lv— TFK( Nm,00,x < C||Bg 1Hm]v 7k (v)\mOOK < — o |v\l+1K < Cmeas(K) 2
K K

m ’U|l+1,K-
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(¢c) For 1<(<k,0<m</l+1,

{41

[0 = 7 (V) lm,0, i < C ;fn [Vler1,000c Vo€ WHES(EK).
K

(To prove) Use Bramble-Hilbert and Deny-Lions lemmas and replace H*1(K) and
H™(K) by Wk (K) andW™>(K)

Definition (Regular triangulation).

A family of triangulation 73, (h > 0) is called regular if there exists o > 1 such that

h
max —% <o Vh>0.
KeT, pi

Theorem 2.11 (Interpolation error).
Let Ty, be a reqular family of triangulations and assume that m = 0,1, k > 1. Then there
exists C, independent of h, such that

v —7F (V) |ma < CAT™ ] g Voe HTYQ), 1<6<k.

Proof.
k k
v — 7 (v) %IQ = Z lv — ﬂ-h(v)ﬁn,K
K
hlI}H 20,12
< C Z(T) ‘”’l+1,K
x PK
< C Z(hﬁl_m)2 |U|l2+1,K7 hi < pr o
K
< O ol g

O

Note that the restriction on the index m is due to the fact that the inclusion X} ¢ H™(Q)
holds only if m < 1.

The construction of a finite dimensional space contained in H?(2) would require higher order

continuity across the interelement boundaries.

2.4.1 Interpolation Error: the vector case
Recall the space of vector functions:
Wk .={v, e Hdiv;Q) :vi|lk €Dy VK €T}, k> 1.

To define the interpolation operator we must give a meaning to the point value n-v at all nodes

a; € Q and to all the K-moments m;(v).
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If v € CY(Q)4, this is easily doable.

But it will be useful to define the interpolation operator even in spaces of functions that are
not necessarily continuous.

Instead of the point values of n - v on a face Fx of K, consider the following degrees of

freedom
[ neav wero,
Fi

which are called Fx-moments.

Denote the global set of these Fg-moments relative to a function v by my(v), l =1,--- Ny
and denote the set of K-moments by m(v), ! = Ny p+1,---, Nj. Let ¢; be the shape functions
such that

ms(@;) = 0is, i,8=1,--- Np.

Define the interpolation operator wi cHY Q)T — ,’f by
Np,
k
Wh(v) =Y mi(v)e;
i=1

mi(wF(v)) =my(v), i=1,--- N.

Denote by m; i (v), i =1,--- , Mg the set of K-moments and Fx-moments relative to K. Define

a local interpolation operator

me )ik, veH Q)
We have
mik(v) = mz‘,K(w’%(v)), i=1,---, Mg

and
wﬁ(v)h{ = w’;((v|K), VK eT,, Vv e Hl(Q)d.

Let P[k{_1 be the orthogonal projection in L?(K) onto Pj_;.

Then, we have an important property:
div(wh (v)) = PEY(divvy), Vv e H'(K)%

(Proof) Since div(w? (v)) € Py_1, for each ¢ € Py_1,

/¢d1v /VUJ Wi (v / Y- wi(v
_/I(vw.v+/(9K¢n-v:/I(1/;-divv,
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owing to the fact that the moments of v and w’;((v) are the same, i.e,
mi g (v) = mig(Wi(v)), i=1 M. D

Similarly we have

div(wf(v)) = pf~H(divv), Vve H Q)
where pf’;_l is the L2(£2)-orthogonal projection onto
V= {ve L*(Q) : v|x €Pry VK €T}

This commutativity property is very important for the approximation theory in H(div;€2), and
it turns out to be useful also when considering optimal error estimates for boundary value

problems. The introduction of the polynomial spaces Dy, is in fact motivated by such a matter.

HY(Q)4 div L3()

wi | Lot
wf div vt
Define
V= | det BK’ BI_(l voTlk.
Note that

ve HY(K)? if and only if v e HY(K)?,
v €D if and only if v € Dy.
For v € HY(K)% € HY(K),
/Kv - Vipdi = /K |det Bg|(Bg'v o Ti ) (B Vip o T )di

:/K(Bl_{lv)(B%Vzb)dxz/ vV,

K

where 1/3 = 1 o Tk, and analogously

/ngdivf/:/d)divv and then / @Zsff-ﬁ:/ Yv-n.
K K oK oK

For each v € H'(K),
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(Proof) We have to show that all K-moments and F -moments of v and [wh, (v)]" coincide. In

fact we have that any w € (Py_2)%,
/f([t.u]f((v)]A ‘W= /K | det B | (B;(Iw’;((v) oTk) W= /K (Bf(lwl}((v)) W
= /Kw]}((v) (Bg'w) = /Kv~ (B'w) = /K (Bl}lv) ‘W

—/ \detBK](Bl}lvoTK)-vir—/ VoW,
& &

and for any 1[1 e P,

/Aqﬁv-ﬁ:/ z/Jv-n:/ Ywh(v) n= [ Jwk©)]" n
oK oK oK oK

Proposition 2.12. For any v € H™(K)*, m > 0, we have v € H™(K)?, and there exists a
constant C = C(m,d) such that

(@) ¥, & < ClIBE | IBx|™ | det Bi|? [Vlm i Vv e H™(K),
(b) v

Theorem 2.13. [f1 <[ <k and0 <m <1, then there exists a constant C' = C’(K’,wk l,m,d)

K? 9
such that

_ _1 ., A ’
mx < C|Bx| |Bg! ™| det Bx |72 [¥],, V¥ € H™(K)%.

I+1
vV — Wi (V)|m,x < Cﬁ Vg Vv e H(K)!
K

and for each v € H'(K)® with divv € H'(K)
hl

|divv — divwh (V) |mx < C L |divv] x Vve H(K)
p

m
K

Theorem 2.14 (Global Interpolation error).
Let Ty, be a regular family of triangulations and assume that k > 1. Then there exists C,
independent of h, such that

v — Wl (W raivig) < CH (Ve + [divv]ig)

for each v € HY(Q)? with divv € H(K), 1 <1< k.

2.5 Projection Operators

The interpolation operator gives optimal error estimates in Sobolev norms whenever the function
to be interpolated enjoys the minimal requirement to be continuous. In view of finite element

analysis, it is useful to introduce other approximation operators, remarkably the L?(2)- and
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H'(Q)-orthogonal projection operators, which make sense on functions which need not to be
continuous.
Let H be a Hilber space and S a closed subspace of H.

Define the orthogonal projection operator Ps in H over S such that

Ps(v) € S : (Pg(v),cp)H = (v,cp)H Vpes.

It is characterized by the property
v = Ps(v)|z = min |lv — ¢l &
pES

Note that

Pé=Ps and |Ps()|g <|v|g YoveH.
We are interested in the following projection operators

P L*(Q) — XF, P, HY(Q) — X},

pFL2(Q) — Y, QY : Hdiv; Q) — W},
where
Vi ={v, € L}Q) : vl €Pr VK €T}, k>0.

Proposition 2.15. If 73 is a regular family of triangulations, then

(a) Hv—P,’f(v)H <ChF olppr, 1<0<k, VYoveHTYQ),
b) |[v—PF ()1 <Chlolpr, 1<E<Ek, YveHT(Q),
1,h

(c) v = QEW)la@ivie) < ChE([v]e + Hivvle),
1<(<Ek, VveH(Q)? divv e H/(Q)?

(@) o= PE@IL < Cloh and  1Iv = Q5w < IVl iraiesn-
Under H? regularity assumption, we have the following L*()) error estimates.
(e) |lv— Pﬁh(v)H <ChF M lpp, 0<0<k, VYoveHTYQ),
() llv = By ()|l < Chlvfr, Yve H (),
(9) v = Py()li < Cllv = PfL(v)1 Vove HY(Q),
(h) ||v —pﬁ(v)” <O lpp, 0<0<k, Yove HTYQ).
Proof. (a), (b), (c) are immediate consequences of the orthogonal projection property and
interpolation error estimate.

The second result of (d) is also an immediate consequences of the orthogonal projection

property.
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For the first result of (d), from the orthogonal projection property we have

lo = Py (v)lly = min [lo— gl < Jlos,
peXk

and then using the standard compactness argument yields the conclusion.

Now we will prove (e) using the duality argument.

(Duality Argument).

For a given r € L%(Q), by Riesz representation theorem there exists ¢(r) € H(Q)
such that

(6(r), V) () = ()2 Yo € H'(Q).

Assume that ¢(r) € H%(Q), i.e., H?-regularity.
By closed graph theorem, there exists a constant C' = C(2) such that

6(r)l2 < Cllrll Vre LX(Q).

(L%(9) error estimate).

Set e = v — vy, € L%(Q) with v, = P{fh(v).

lel|? = (e, e) = (p(e), e)mi(q) by duality argument
= (e, ¢(e) —wp) ) Ywn € XF(Q), by (e,wp) =0
< llell1 l¢(e) = wnlli  ¥Ywn € X5(Q).

Since ¢(e) € H%(Q) C C°Q) by Sobolev embedding theorem, we can take w;, =
7 (é(e)) so that

lel* < llelly lg(e) — w5 ((e))l
< Chlle|1|¢(e)]a by interpolation error
< Chllellille] by H?-regularity

Hence, by the last inequality and (b) of Proposition 2.15,
lo = P @)l < Chllo = PL@)lh < Ch5 olepr, 1<E<k.

Combining the last inequality with (d) yields (e).

Using (e) and the orthogonal projection property, we have

lo = Py (v)|| < (;gg lo =@l < llo = PE ()]l < Chloly, veHY(Q)
h
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which completes (f).
Since Pf,(v) € XF,

lo = Pyl < [lv = P, )l + 1P () = PEy(v) |
= [lv = PP4(0)l1 + 1Py = P )]l

Using the inverse inequality and the fact that
1QW)||m < ||v|lm, if @ is H-orthogonal projection

we have

|1PF[v — Pf,(0)][[1 < V14 Ch=2||Pf[v — Pf,(v)]|| £ V1+ Ch=2|jv — P (v)]|
<V1+Ch2Ch|lv—Pf(v)|1 < Cllv— PfL0)|1.

This completes (g).

Let P¥ be the L?(K)-orthogonal projection onto Py. Then, we have
" = Py Vo e L*(Q
pr(v)|k = Pg(vlx) Yove L7 (Q).

Using the similar arguments of Theorem 2.11 we have the conclusion (h). O

Definition (Quasi-uniform triangulation).

A family of triangulation 7, (h > 0) is called quasi-uniform if it is regular and there exists
7 > 0 such that

min hg >7h VYh>0.
KeT,

This yields the so-called inverse-inequality: there exists a constant C' such that

1
IVorll < € 5 llonll Von € XK(9Q).

Theorem 2.16 (Approximation Properties).

Let Ty, be a family of quasi-uniform triangulations. Then we have

(a) v =P @) +hllv = PF)ll < CAH olerr, 0<C<k
(b) llv = PE )l + hllv = PE ()l < ChH* olerr, 0<E<k, Vve HFYQ),

if we assume the H? regqularity assumption for £ = 0.
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3 Variational Formulation

3.1 Variational Formulation

Let © be a bounded domain of R?, d = 2,3 and let 9Q be its boundary. Consider a boundary

value problem of the form

(3.1)
Bu = 0 on 0%,

{ Lu = f in €,
where f is a given function, u is the unknown, L is a linear differential operator and B is an
affine boundary operator. Also, 92* is a subset of 9€) possibly the whole boundary.

The problem (3.1) can generally be reformulated in a weak (or variational) form. This
approach allows the search of weak solutions, which don’t necessarily satisfy the equations (3.1)
in a pointwise manner.

Formally speaking, the weak formulation can be derived after multiplication of the differential

equation by a suitable set of test functions and performing an integration upon the domain.

As a result, we obtain a problem that reads
(3.2) find wue W : A(u,v) =F(v) YvelV,

where W is the space of admissible solutions and V' is the space of test functions. Both W and
V' can be assumed to be a Hilbert spaces.

F is a linear functional on V' that accounts for the right hand side f as well as for possible
non-homogeneous boundary terms.

A(-,-) is a bilinear form corresponding to the differential operator L.

The boundary conditions on u can be enforced directly in the definition of W (essential
boundary conditions), or they can be achieved indirectly through a suitable choice of the bilinear
form A as well as the functional F (natural boundary conditions).

In most case, W = V. Denote by (-,-) the L?(€2) inner product.
Example (Poisson problem).

W=V =H\Q)

{ —Au = f inQ,
= A(u,v) = (Vu, Vo)

u = 0 on 0N2
F(v) = (f;v)
Example (Stokes problem).
—vAu+Vp = f inQ, W=V = HY(Q)? x L3(Q)
div u = 0 inQ, = A(u,v) = (vVu,Vv) — (p,div v) + (¢,div u)
u = 0 onodQ F(v) = (f,v)

where u = (u,p), v = (v,q) € V.
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3.2 Some results of functional analysis

In this section we present basic functional theorems about existence and uniqueness of the

solution of the variational problem.

Proposition 3.1 (Projection Theorem). Given a closed subspace M of H and v € H, there
exists a unique decomposition

v = Pyv+ Pyav,

where Py : H — M and Py : H — M* are orthogonal projections, respectively. In
other words,
H=Ma& M=,

Theorem 3.2 (Riesz Representation Theorem).

Any continuous linear functional L on a Hilbert space H can be represented uniquely as
L(v) = (u,v)y, for someu € H.

Furthermore, we have

L[ = [l

Proof. Uniqueness is given by

0= L(u1 —uz) — L(u1 —u2) = (w1, u1 — u2)g — (uz, w1 — u2)m
= (u1 — ug,ur — ug) g = [lus — ualff.

(Existence) Let M = {v € H : L(v) = 0} = Ker(L). Then M is a subspace of H and
H=Mo®M*.
Case (1): M+ = {0}.
In this case, M = H so that L = 0. So take u = 0.
Case (2): M+ # {0}.
Pick 2 € M+, 2 # 0. Then L(z) # 0. For v € H and 8 = L(v)/L(z) we have

L(v—pz)=L(w)—pL(z) =0 or v—pze M.

Thus, v — Bz = Py and Bz = Py,1v. In particular, if v € M, then v = 3z which proves

that M~ is one-dimensional.

Choose
_ L(»)

= zZ.
12117
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Note that u € M+. We have

(u7v)H = (u, (U - /BZ) + ﬁz)H = (u7v - /BZ>H + (UHBZ>H

L(z
= (0, B2)1r = B (2 20 = 0L(2) = L),
121
Thus, this u is the desired element of H.
It remains to prove that ||L||zs = ||u|| . Using the dual norm,
L(v) |(u,v) a| [L(z)]
IL]|lar = sup = = < |lullg = < I
ozver vlla  ozvern lvllm 1] =
Therefore, ||ul|g = ||L|| g O

Remark. According to the Riesz Representation Theorem, there is a natural isometry between

H and H' (u € H «— L, € H'). For this reason, H and H' are often identified. for
example, [L2(Q)]" = L?(Q).
Let us consider the case W =V in (3.2)

(3.3) find weV : A(u,v) = F(v) VveVl.

Theorem 3.3 (Lax-Milgram lemma).
Let V' be a (real) Hilbert space, endowed with the norm || - ||v, A(-,-) a bilinear form on

V x V and F(-) a linear continuous functional on'V, i.e., F € V'.

Assume that A(-,-) is continuous:

Iy >0 st |Alw,w)| <v|vlv|w||y Yv,weV,

and coercive:

Ja>0 st Alv)>alvl|l VeeV.

Then, there exists a unique solution u € V' solution to (3.3) and
1
lully < = [[Fllv.
a

Proof. For convenience, denote by || - || = || - ||y and (-,-) the inner product in V.

By the Riesz representation theorem, we can write
Fw)=(RF,v) YveV

and for each fixed w € V
A(w,v) = (Aw,v) Yv eV
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where the isometric operator R: V' — V and A : V — V are linear continuous operators

since ( ) (v)
RF,v F(v
|RF|| = sup ~———= = sup —= = [ Flly
0£veEV o]l 0A£veEV [ v]]
and ( ( )
Aw, v A(w, v
|Aw| = sup ) _ sup < lwll-
0£veV [|v]| 0#£veV o]l

Problem (3.3) is thus equivalent to the following one: for each F € V', find a unique u € V
such that
Au= RF.

It is enough to show that A is bijection.

—= I — I

we have |[v|| < 1||Av]|. Thus, the uniqueness is proven.

(Surjective : the range R(A) of A = V) It is enough to show that R(A) is closed and
R(A)L = {0} because V = R(A) @ R(A)* if R(A) is a closed subspace.

Suppose that Av,, — w in V. From the fact that
1

[vn, = vm|l < aHAvn — Avp,
vy, is a Cauchy sequence in the Hilbert space V. Set v = limw,. Since A is continuous,
Av =w € R(A) and hence R(A) is closed.
Let z € R(A)*. Since

0= (Az,2) = A(z,2) > af 2|,
we have that z = 0.
Finally, we have

1 1 1
2<—A =—F(u) < =||F|lv
Jul* < ~ Afw,u) = = F(w) < ~ | Fllvul
which completes the theorem. ]
Remark (Symmetric Case). If the bilinear form is symmetric, then A(-,-) defines a scalar

product on V and hence the Riesz representation theorem suffices to infer existence and

uniqueness for the solution (3.3).

In this case, the solution can be regarded as the unique solution to the minimization
problem
find w € V such that J(u) < J(v) VYov eV,
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where J(v) is a quadratic functional given by

J(v) = %A(v,v) — F(v).

g
Remark (Complex Case). Let V be a complex Hilbert space, endowed with the norm || - ||y
and A(-,-) a sesquilinear form on V' x V:
A(w, civ1 + cavg) = G A(w,v1) + 2 A(w, v2), w,vi1,v2 €V, ¢1,c0 € C
and F(-) a linear continuous functional on V.
Assume that A(-,-) is continuous:
vy >0 st |A(v,w)| <v|vlv Jw||ly Yv,w eV,
and coercive:
Ja>0 st |A(v,v)|>alp|} YeeVW
Then, there exists a unique solution u € V solution to (3.3) and
1
[ully < = [[Fl[v
a
g
Now, let us consider the general case
(3.4) find ue W : A(u,v) =F(v) YveW
Theorem 3.4 (Extension of the Lax-Milgram Lemma).
Let W and V' be two (real) Hilbert spaces, endowed with the norms || - ||w and | - ||v,

respectively, and let A(-,-) be a bilinear form on W x V and F(-) a linear continuous

functional on V. i.e., F € V.

Assume that

Iy >0 st |JAw,v)| <vlw|lwlvlly YweW,veV,
Ja>0 st sup Alw,v)
ozvev V]IV

sup A(w,v) >0 V0#velV.
weW

> alw|lw YweW,

Then, there exists a unique solution u € W solution to (3.4) and

1
[ullw < = [[Fllv
(0%
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Proof. By the Riesz representation theorem, we can construct a linear continuous operator
A: W — V such that for each w € V,

A(w,v) = (Aw,v)y YveV

and

A(w, v
lwlly < sup 2% < Ll Y e W

ev vllv
With the isometric operator R : V' — V constructed in Lax-Milgram lemma, we can

reduce the problem to find a unique v € W such that
Au = RF.

If Aw =0, then A(w,v) = 0 for any v € V so that w = 0 by the second hypothesis. Hence,
A is injective.
Moreover the range R(A) of A is closed. In fact, if Aw, — v in V, we have

1 Alw,, — wy,),v
[wn — wllw < = sup (Alwn = ), v)
& 0£veV [vlv

1
L <~ A(wn — wa)lv,

hence w, — w for some w € W and Aw,, — Aw in V.

Also, if z € R(A)4, i.e.,
(Aw, z)y = A(w,2) =0 YweW,

it follows z = 0 by the third hypothesis, hence A is surjective. Finally, the stability is

easily given:

1 A(u,v
fulw < & sup A o

1 1
|Aullw < = [[RF|lw < — [|F ||y
a ozvev V[V o o

1
«a

3.3 Galerkin Method

In this section we assume that W = V. We consider the following variational problem:
(3.5) find wueV : A(u,v) = F(v) Vvel.

Let 7;, be a family of regular triangulations of Q with the mesh size h and let {V},} denote

a family of finite dimensional subspaces of V, for example, V3, = X ,’j .
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Assume that
(3.6) for all v € V, inf |lv—ovpl| =0 ash—0.
v €V
The Galerkin approximation to (3.5) reads:
(3.7) find up €V}, : A(uh,vh) = f(vh) Yo € V3,

From the algebraic point of view, let {¢; : j =1,---, N} be a basis for V}, so that we can set

Np,
up(x) =Y & 6;(x).
j=1

Then, from (3.7) we deduce the following linear system of dimension Np:
AL =F,

where £ = (§j), F = F(¢i), Aij = A(pj,¢;) for i,5=1,--- | Np.
The matrix A is called the stiffness matrix.

By subtracting the equation (3.7) from (3.5) we have the fundamental orthogonality
A(u — uh,vh) =0 VYo, €V

Theorem 3.5 (Céa Lemma). Under the assumption of Laz-Milgram lemma, there ezists a

unique solution up, to (3.7) such that
1
lunllvy < —[|F v
o'
If w is the solution to (3.5), then it follows
Yo,
. <2 inf Jju— vy
fu—wly <2 ing fu—wnlly

Proof. Since V}, is a subspace of V', applying the Lax-Milgram lemma yields the existence and

uniqueness of uy and the stability.

Using the fundamental orthogonality, we have that for any wj, € V},

allu—up|lf < Alw = up,u —up) = A(u — up, u —up) + A(u — up, up + wp)

= A(u — up,u — wp) < vl|u —upllv ||u — wallv.

This completes the theorem. O
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Remark (Ritz Galerkin Method). When A(-,-) is symmetric, Galerkin method is referred to
as the Ritz Galerkin method, in this case existence and uniqueness follows from the Riesz
representation theorem. Also, uy turns out to be the orthogonal projection of u upon Vj

with respect to the the scalar product A(-,-).

Remark (Stiffness Matrix A). The stiffness matrix A is positive definite, i.e.,

Np,
(Anm,m) = > miA(d), ¢i)ny = A, ) >0, V0 #ne RV

3,j=1

since (An,n) = A(n, 1) where 7;,(x) = Y20 n;¢;(x) and = (n;).

In particular, any eigenvalue of A has positive real part:
Let A(x1 4 ix2) = (A1 +iX2)(x1 + iX2).
(Ax1,%1) = (%1, X1) — A2(x2,%1), (Ax2,X2) = A\1(X2, X2) + A2(x1,X2)
by summing
(Ax1,x1) + (Ax2,%x2) = A1 [(x1,%1) + (x2,%2)].
Since (Ax1,x1)+ (Axg,x2) > 0 and (x1,x1) + (x2,%2) > 0, we are led to Ay > 0.

When the bilinear form A4 is symmetric, it follows immediately that A is also symmetric

and any eigenvalue of A is positive real value.

Remark (Example). If V = HY(Q) and V};, = XF, then by Céa Lemma and approximation

property we have the following error estimate in H*({)-norm:
T 7C e
— < L f — < —h
e —unlly < inf ju—wnll < == A ule

provided u € H*1(Q), 0 < ¢ < k.

3.4 Petrov-Galerkin Method

In this section we consider the following variational problem:
(3.8) find up € Wy, : Ah(uh,vh) = fh(vh) Yoy € Vy

where W), and V}, are two relative finite dimensional subspaces of W and V such that W}, # V},
but dim W), = dim V}, = N}, for all h > 0, and A;, and F}, are convenient approximations to A
and F, respectively. Spaces W and V need not be necessarily different.

Due to Babuska and Aziz we have the following theorem.
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Theorem 3.6. Under the assumptions of Theorem 3.4, suppose further that Fy, is a linear map
and that Ay, is a bilinear form satisfying the same properties of A, (2) and (3) in Theorem
3.4, with the constant a. Then, there exists a unique solution up, to (3.8) such that

1 Fn(vp
lupllw < — ( )-
U 0v,evi, VRV

Moreover, if u is the solution of (3.4), it follows

1 A(wp, vp) — Ap(wp, v
<1+7> = whllw + —  sup |A(wn, vn) = An(wn, vp)|
Qh Qh 0£v, €V, [vnlv

1 —
L | (vn) — Fnlvn)|
Oh 0#v, V3, [vnllv

uU—1u < inf
Ju =l < inf

Proof. For any fixed h, existence, uniqueness and stability follow from the extension of Lax-

Milgram lemma.

For all wy, € W}, and vy, € V},, we have
An(up — wp,vp) = A(u — wy, vp) + A(wn, o) — Ap(wp, va) + Fr(on) — F(op)

so that

A(wn, vi) — Ap(wn, vh F(vn) — Fn(vp
anllun — willw < llu— wpllw +  sup |A( ) ( )| I |F (vn) (vn)|
0F#vp VR [vnllv lvn|lv

Finally, using the triangle inequality

lu —unllw < |lu—wnllw + [Jup — wallw

yields the theorem. O
Examples of Petrov-Galerkin approximations are furnished by the so-called 7-method (the
trial functions do not individually satisfy the boundary conditions; thus, some equations are

needed to ensure that the global expansion satisfies the boundary conditions).

3.5 Generalized Galerkin Method

In this section we consider the following variational problem:
(3.9) find up € Vj, : Ah(uh,vh) = fh(vh) Yo, € Vp

where V}, is a family of finite dimensional subspaces of V, and Aj and F; are convenient
approximations to A and F, respectively. This is a special subcase of Petrov-Galerkin Method
including the collocation method in its weak form. Fp(-) is a linear form defined on V} and
Ap(-,-) is a bilinear form defined over V;, x V3, and they do not necessarily make sense when

applied to elements of V.
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Theorem 3.7 (The first Strang Lemma).
Under the assumptions of Theorem 3.3, suppose further that Fy, is a linear map and that

Ay, is a bilinear form which is uniformly coercive (independent of h) over Vi, x Vj:
.Ah(’l)h,'l}h) > Oé*H’UhH%/ Yo € Vp,.

Then, there exists a unique solution up, to (3.9) such that

Junlly < Fn(on),
A" 0, eV, ||’Uh||V

Moreover, if u is the solution of (3.5), it follows

|A(wp, vg) — Ap(wp, vp)|

1
(1+ i ) lu—wplly +— sup

a*

— < inf
[|u Uhl!v_wilévh

OF 0ty €V |vnllv
1 Flun) - F
L | F(vn) h(vh)’.
O 0o, eV, s llv

Proof. The existence, uniqueness and stability follow from the Lax-Milgram lemma.

Let wy, € V. Setting o = up — wp, # 0, we obtain

o llonll} < An(on, on)

= A(u — wp, o) + A(wp, o) — Ap(wp, o) + Fr(on) — F(on).

We have
* Alwn, o) — Ap(wn, op, Fi(on) — Flop,
o lonly < vllu— wpfly + A0 = An(wn o)l | Falon) = Flon)]
lonllv lonllv
A(w , U — Ap(w , U Fi(vy) — Flo
<lu—wnlly + sup AW = Anlwn o)l o 1) — Flen)]
0£0n €V, llonllv otmevi  luallv

The above inequality is true also when o5 = 0. Using the triangle inequality
lu = unllw < llu—wallw + [lun — wnllw
yields the theorem. O

Proposition 3.8. Under the same assumptions of the previous theorem, suppose further that
the bilinear form Ap(-,-) is defined at (u,vy,), where u is the solution to (3.5) and vy, € Vp,
and satisfies for a suitable v* > 0

[An(u — wh, vp)| < 7" llu —wpllvllvelly - Vws, vn € Vi,
uniformly with respect to h > 0. Then the following convergence estimates holds
*

) 1 Ap(u,vp) — Fp(v
|u —upv < (1+7*> inf [lu—wallv +— sup Anltts ) Falun)]
a* | wpevy, Q" 0un eV, llonllv
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Proof. For all wy, € V},, we have
Ap(up — wp, up — wp) = Ap(u — wpy, up, — wp) + Fp(up — wp) — Ap(u, up — wp)
so that

Fr(vp) — Ap(u, vy,
ollun — wnlly <y'llu—wnlly + sup nlo) —An(ton)l
00, €V, lvnllv

The triangle inequality yields the theorem. O

Remark (Non-conforming approximation). When V;, ¢ V, the bilinear form A is thus not
necessarily defined on Vj, x V4. Assume that a norm || - ||, and the approximate bilinear
form Ay, are defined in (V' 4 V},), and that the approximate linear functional Fj, is defined
on Vj. We require that there exist constants a® > 0 and v* > 0 such that for each h > 0

Ap(vn,vn) = o*[|unlli;  Yvn € Vi,
[An(w, vp)| < v llwllallvalls Yw € (V + va), v € Vi
Then by the so-called second Strang lemma we have

. 1 Ap(u,vp) — Fr(v
lu —up|n < <1+fy*> inf H“_whHh‘i‘j sup [ An(u, vp) n(vn)|
a* ) wpeVy, a* 0ty vy, H'UhHh

The proof is quite similar to that of the previous proposition.

For example, consider P; non-conforming triangular finite element method for Poisson

problem:

Ap(vp,wp) = Z (Vop, Vwp)g  and o] := Ah(vh,vh)%.

KeT,
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4 Galerkin Approximation of Elliptic Problems

4.1 Problem Formulation

Let © be a bounded domain in R? with a Lipschitz continuous boundary 9.

Consider the second order linear operator L defined by
(4.1) Lu= -V -AVu+b-Vu+V-(bu)+cu,

where a matrix function A = (a;;), vector functions b and b, and a scalar function ¢ are given
coefficients.
If the coefficients b and b are regular enough, we can omit either b- Vu or V- (bw) without

loosing generality.

Definition (Elliptic oprator). The differential operator L is said to be elliptic in € if there

exists a constant «g > 0 such that
ag €] < €TAE  for each € € RY and a.e. z € Q.
The bilinear form associating to L is
a(u,v) = (AVu, Vo) 4 (b - Vu,v) — (bu, V) + (cu,v).

Assume that the coefficients hold

aij, b, by, ¢ € L=(Q).
Let V be a closed subspace of H'(f) satisfying

H}(Q)cV cHY(Q).
The variational problem we are interested is as follows: For a given F € V’,

(4.2) findueV : A(u,v)=F(v) Yvevy,

where the bilinear form A(-,-) coincides with a(-,-) up to the sum of possible boundary terms.



4.1 Problem Formulation

With the equation
Lu=f inQ

(Examples of Boundary Conditions).

a. The Dirichlet Problem
v =0 on Jf.

=  A(u,v) =a(u,v), Fv)=(fv), V:Hé(Q).

b. The Neumann Problem

ou
— = Q
ony, g ond

where the conormal derivative of u is given by

;:L =n-AVu — (b-n)u
IfA=7andb=0, then 2~ = 2% _y.vu.
aIIL on

—  A(u,v) = a(u,v), F)=(f,v)+ (g,v)00, V =HY Q).

c. The Mixed Problem

u = 0 on I'p,
ou

= I'y.

811[, g on i1y

= A(u,v) =a(u,v), F)=(fv)+(g,v)ry, V= H%D(Q)

d. The Robin Problem

ﬂ+,‘-€u:g on 0f)
al’lL

where k is a given function.

= A(u,v) = a(u,v) + (ku,v)aq, Fv)=(f,v)+ (g,v)s0,

vV =HYQ).

41
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4.2 Existence and Uniqueness

The basic ingredient for proving the existence of a solution is the Lax-Milgram lemma.
For any f € L*(Q), v — (f,v) on H} () is a continuous linear functional.
The continuity of bilinear form a(-,-) can be easily verified by using the L>(2) coefficients.
Hence, we need only to check the coercivity of a(, -) under suitable assumptions on the data.

The ellipticity assumption yields
|| V| = ap(Vo, Vo) < (AVu, Vo) Yo € HY(Q).
For a convenience, denote the remaining term in a(v,v) by
R:= (b-Vuv,v) — (bv, Vv) + (cv,v).

Note that

(b-Vuv,v) == (b,V(v?)) and — (bv,Vv)=—= (B,V(v2)> .

N

Hence, we have

R:= % (b . B,V(v2)> + (ev,v) = (—;div (b — b) +c,v2> + % (n- (b —B),ﬁ)m

Let Cq be the Poincaré constant satisfying
lol* < CalVol* Yo e Hy(€).

Assume that div (b —b) € L®(Q).
a. Dirichlet Problem :

If there exists a constant 7 such that

1 ~
—n<—=div(b—b)+c¢, ae z€Q with —oo<n<@,
2 Ca

then a(-,-) is coercive since ag — nCq > 0 and

(a0 —nCo) V| if n >0,

a(v,v) = (AVv, Vv) + R > ao|| Vo> = nv||* >
Ivel | ol V|2 if n <0,
1+Cq

14?8‘9 HUH% if §p <O.

>

{ 20-1C% ||y |12 if 5 > 0,

b. Neumann Problem :

If there exists a constant pg > 0 such that

1
(4.3) 0<,u0§—§div(b—b)+c ae.z€l and n-(b—b)>0 ae ze€d,
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then

1 . ~ 2 1 ™ 2 2
_(_= _ _ . — >
R = ( 2dlv(b b) + ¢, v ) + 5 (n (b —b),v )89 > uolv||

so that a(-,-) is coercive:
a(v,v) > ao|| Vol|* + po|[v[|* > min{ao, uo} [[v]l.

The second condition of (4.3) can be easily replaced by

o
 2min{ao, i}

b — bl L(0) < €0, 0< e o

where C* is the constant of trace inequality:
/ U2§C*/(v2+|Vv|2) Vo e HY(Q).
Ci) Q

If g € L?(09), v — (g,v)s0 is a continuous linear form and hence F(v) = (f,v) + (g,v)aq is
also a continuous linear form.

When the coefficients b, b and ¢ are all zeros, and

/fd$—|—/ gds = 0,
Q o0

taking the space V = H(2) N L3(Q2) guarantees the Poincaré inequality and we can easily show
the coerciveness of a(-,-).
c. Mixed Problem :

The Poincaré inequality is still valid in H%D ().

Thus, if there exists a constant 1 such that

1 -
—n<—-div(b—b)+¢, ae € with —oo<n<ﬂ,
2 Ca

and either
n-(b—b)>0 ae zely
or

~ 2min{ag, to
Hb—bHLoo(l“N) <€, 0<¢< {C'*},
then a(-,-) is clearly coercive.
If g € L*(T'y), v — (g,v)ry is a continuous linear form and hence F(v) = (f,v) + (g,v)ry
is also a continuous linear form.

d. Robin Problem :
If there exists a constant pg > 0 such that

1 .
0<,u0§—§div(b—b)+c a.e. v €
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and either

1 .
/<c+§n-(b—b)2() a.e. x € 0N

or

Ik + %(b —b)- n|[z~(gq) is small enough,
then A(u,v) = a(u,v) + (ku,v)sq is coercive:
A(u,v) = (AVo, Vo) + <—;div (b—Db) +c, v2> + % (Ii +n-(b-— f)),v2>
oN
> ao||Vo||* + pollv]|* = min{ao, po} [[ofF.

Also, if K € L>®(98), then A(u,v) = a(u,v) + (ku,v)sq is continuous. Finally, if g € L?(09),
v — (g,v)p0q is a continuous linear form and hence F(v) = (f,v) + (g,v)sq is also a continuous

linear form.
(A priori estimate).
The coerciveness of A and continuity of F yields
allullf < A(u,u) = F(u) < [|Flvull
and then

Cllfll-1 for Dirichlet problem,

ol < |Fllv <
C(Ifll+ ||g||7%,89) for Neumann problem.

4.3 Non-homogeneous Dirichlet Problem

Consider the following non-homogeneous Dirichlet problem:

{Lu = f in Q,

D
®) u = @ on 02.

Let ¢ be the extension of ¢ in the whole €2 such that
_ . 1
12l < Cllells oo if ¢ € HZ(0Q).
By the change of variable & = u — @, the problem (D) is equivalent to

. Li = f—Lp inQ,
(D*) )
v = 0 on 0f).

The variational problem is to

find @€ HY} Q) : a(@,v)=(f,v)—a(@v) Yvc H Q).
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Since

la(@,v)] < Cligli vl < Cllells pallvll Vo e HY(Q),
F(v) = (f,v) — a(p,v) is a continuous linear form on H}(2). Thus, the a priori estimate is
given by

lulls < llally + 1@l < CUfll-1 + llel

%,BQ)-

4.4 Regularity of Solutions

Assuming additional regularity on the data it is possible to prove that the weak solution is
indeed more regular, i.e., it belongs to H*(Q2) for some s > 1 (see Grisvard(1985)).
It is worthwhile mentioning that the smoothness degree of the solution of a boundary value

problem does affect the order of convergence of a numerical approximation.

(Regularity of Solution).
Assume that for some k& > 0, 0 is a C**2 manifold and the coefficients hold

aij,gi 60k+1(0), bi,CGCk(Q) and fGHk(Q)

Assume further that

i)pe H k+%(8Q) for the non-homogeneous Dirichlet problem (D),
ii)ge H k+%(6(2) for the Neumann problem,

iii) k € C**+1(99) for the Robin problem.

Then the respective solution u belongs to H¥2(Q).

In particular, if all data are C'°°, then u is C'*°.

(Polygonal Domain).
On the plane convex polygonal domain, the homogeneous Dirichlet problem for the Laplace

operator:
—Au=f inQ, w=0 onodf2

has the solution v € H?(Q) if f € L?*(Q), the homogeneous Neumann problem for the

Laplace operator:

—Au=f in Q, @:0 on 0f)
on

has the solution u € H(Q) if f € L?(Q) and the compatibility condition [, f = 0 holds.

If ©2 is not convex, and w > 7 is the angle of a concave corner of 9€2, then it turns out that
(u — s) is an H? function locally near that corner, but u € H %(Q), where s is a suitable

singular function.
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On the contrary, the solution of the mixed problem in general is not regular. There exist
examples in which the data and the boundary are smooth, while the solution belongs to
H?*() for any s < 3, but not to H%(Q)

(Example having corner singularity).

Let Q be an open, bounded polygonal domain in R? with one re-entrant angle. Extension

to the domain with the finite number of re-entrant angles is straightforward.

Let w be the internal angle of €2 satisfying 7 < w < 2w. Without the loss of generality,
assume that the corresponding vertex is at the origin. Define the singular function s and

the dual singular function by

T, o _x ., T 0

s=rwsin— and s_ =7 wsin—

w w
in the polar coordinate (r,6) which is chosen at the origin so that the internal angle w is
spanned by the two half-lines # = 0 and # = w. Consider a family of cut-off functions of

7, 1p(r), defined as follows:

1, O<r§%,
15 [ 8 4r 2 [ 4r 51 (4 1 pR
r=q 2= ([Z=-3)+2(=-3) —=(=-3 BT v <R
e(r) 16{15 <pR >+3<pR ) 5<pR )} g STEP
0, r> pR

where p is a parameter in (0, 2] and R € R is a fixed number. It is well known that the

solution has the representation of the type
U= w + A1,s,
where w € H?(2) N H () is the regular part of the solution satisfying
—Aw — AA(nps) = f, inQ

and A € R is the so-called stress intensity factor. Moreover, the following regularity
estimate holds:
[wll2 + [Al < Crll ]l

where C'g is a positive constant depending on the domain and the diameter of the support

of n,. Especially, Cr increases if the diameter of 7, is chosen smaller.
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4.5 Galerkin Method : Finite Element Approximation
Consider the following Galerkin approximation:
(4.4) find up €V, A(uh, Uh) = f(vh) Yo, € Vp,

where V}, is a suitable finite dimensional subspace of V.
Here, the bilinear form .A(-,-) is continuous and coercive, and the linear functional F(-) is
continuous.

The main point toward probing the convergence of uy, to u is to verify that
lim inf |jv—w =0 VveV
h—0v,eVy ” h”V

Proposition 4.1. Assume there exists a subset V dense in V such that

(4.5) inf |lv—ovplly — 0 as h—0 Yovel.
v EVY

Then, the Galerkin method is convergent, i.e., the solution uy, of (4.4) converges in 'V to

the solution u of (4.2) with respect to the norm || - ||v.
Proof. Since V is dense in V, for each € > 0 we can find v € V such that
lu—vly <e.
Due to (4.5) there exist ho(e) > 0 and, for any positive h < hg(€), vy, € V}, such that
v — vl <e.
Hence, using the error estimate we have

g
lu = unlly < Zllw = wvnllv < = (llu = vl + [lv = va][v)

Q1R

which completes the theorem. O
Assume that Q C R% d = 2,3 is a polygonal domain with Lipschitz boundary and 7}, is a
regular family of triangulations of (2.
The finite dimensional subspace V}, is one of the followings:
i) Vi, = XF N HY(R) (k > 1) for the Dirichlet problem
ii) Vj, = XF (k > 1) for the Neumann problem
iii) Vi = X N HE () (k> 1) for the Mixed problem
iv) Vi, = XF (k > 1) for the Robin problem.
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Theorem 4.2 (H! error estimate).

If the exact solution u € H*(QY) for some s > 2, the following error estimate holds
(4.6) lu—uplly < CR ||ullesr  where £ = min(k,s —1).

Proof. Since C*(Q) is dense in H'(), we can choose V = C*() for both Neumann and
Robin problem, V = C*(Q) N HZ () for the Dirichlet problem and ¥V = C*°(Q)N HéD Q)

for the mixed problem. Furthermore, for each v € V

inf o —opfl1 < [lv =7 (v)[[1 < ChJolega,
v EVY

hence it converges to zero.

Since u € H*(2), s > 2, u € C°(Q) and hence 7¥(u) € V}, holds the respective boundary

conditions. Then, using the interpolation error
Ju— Wlli(“)”l < Ch* [[ulle+1
and the Céa lemma
=l < 7 inf v,

we have the conclusion. O
The convergence result (4.6) is optimal in the H'(Q)-norm, i.e., it provides the highest

possible rate of convergence in the H'(2)-norm allowed by the polynomial degree k.

(Adjoint Problem). Consider the following adjoint problem: given r € L?(£),
(4.7) find ¢(r)eV : A(v,¢(r)) = (r,v) YveV.

The solution to (4.7) enjoys the same regularity property than the one of the original
problem (4.2).

In particular, if Q is a polygonal domain the solution ¢(r) belongs to H2(£2) and holds
(4.8) lo(r)ll2 < Clirllo V1€ L*(9),

provided that €2 is convex, a;; € C1(Q), and k € C1(0Q) (see Grisvard).

This is true for all but the mixed boundary value problem: the solution of the mixed
problem belongs to H?(Q) for any s < 3/2 but in general not to H%/2(Q), even for smooth
data.
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Theorem 4.3 (L?-error estimate). Assume that it holds (4.8).

If the exact solution uw € H*(QY) for some s > 2, then the following estimate holds
(4.9) |u—up| < CRH Y Jullipr  where £ = min(k, s — 1).
Proof. Let r = u — up. For any wy, € Vj, we have
= wnll? = (1 — wn) = A(u — wn, 6(r)) = Al — up, 6(r) — wp)

<Allu = unll1 |¢(r) — w1

Taking wy, = 7F(¢(r)), we have from the interpolation error and (4.8) that

lu = unl* < Allw = unll1 | 6(r) — 75 ($(r) 12
< Cvllu —upllihl¢(r)ll2 < Chllu = w1 [|7]

= Chllu—upll1 flu—ual.
Thus, we have the conclusion. ]

(L°-error estimate). We have the following error estimate in L% ():
lu — unlloo < CRE Julpsy Yu e HFY(Q).

(The non-homogeneous Dirichlet problem).

The variational problem is to

find @€ HI(Q) : a(@,v)=(fv)—a(@v) YveHL(D).
Let V), = X ,’f N H (). Then, the finite element approximation is to
(4.10) find ap eV, : alap,vn) = (f,on) —a(@,vn) Yo, € V.

Here, the construction of the extension operator ¢ — ¢ is not easily performed.
Assuming that o € HY2(09) N C°(99Q), we can get an alternative approach.

Denote by {zs : s =1, -+, M} the nodes on 92 and {a; : i = 1,---, Nj} the internal
nodes. Set
Vi = {up € XF :oplas) = @(zs) s=1,---, M}

The approximate problem reads:

(4.11) find w,eVy : a(up,vp) = (f,on) Vo, € V.
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Any uj, € V¥ can be written by
Ny, M,
up =Y _un(ai)ei + Y p(xs)@s 1= 21 + @,

i=1 s=1
where ¢; and @; are the basis functions of X ,’j relative to the internal and boundary nodes,

respectively.
Then we have the new discrete problem for non-homogeneous Dirichlet problem:
find z,€Vy, :  alzp,on) = (f,vn) —a(@n,vn) Yop € Vi

Using the orthogonality
a(u—up,vp) =0 Vo, €V

and the Céa lemma, we have the error estimate that if u € H*(Q2) s > 2,

lu—uplly = O(hY), £=min(k,s—1).

4.6 Non-coercive Variational Problem

Consider the following elliptic problem:
(4.12) Lu=—-V-AVu+b-Vu+cu.

Define
a(u,v) = (AVu, Vv) + (b - Vu,v) + (cu,v).

When the bilinear form a(-, -) is not coercive, we need the following theorem.

Theorem 4.4 (Garding Inequality).

Suppose that the coefficient matrix A is uniformly bounded, i.e.,
alfP <€TAE VYEeRY, ae z€Q,

and the coefficient b € L>®(Q)%. Then there is a constant K < co such that

(4.13) §Hv||% <a(v,v) + K|v|?* Yve HY(Q).
Proof. By Holder inequality
d
|(b-Vu,v)| = QZbk(m)axkv(x) v(z) da
k=1

d d
S/ka:lbk(x)‘ |0z, v(z)] |U(33)’d$S};ku!oo/ﬂmxkv(xﬂ |v(z)| dz

d
< DMkl 10z, 01l ol < Bloly o]l
k=1
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where

d
B? =" |Ibkll2.
k=1
Now we have
a(v,v) + K|v]|* > alv|; + (b- Vuv,v) + (¢ + K, v?)
> alol; = Boly o] + (8 + K)|lv|,
where
B :=essinf{c(z) : x € Q}.

From the arithmetic-geometric mean inequality, we have

o
a(v,v) + Kvl* = 5 ([l + ol}) .

provided
a B?
K>—-—+——-0.
>+ -8
Note that K need not be positive, if 3 > 0. [

Assume that
(a) a(-,-) is continuous on H'(£):
la(u,v)| < Cillully [[ollv Yu,v e HY(Q)
(b) there exists a constant K € R satisfying the Garding inequality
a(v,0) + Kol > a ol Vv e HY(®)

(c) there is some V C H'() such that there is a unique solution u,

to the variational problem

a(u,v) = (f,v) VoeV
as well as to the adjoint variational problem
a(v,u) = (f,v) YveV
(d) in both cases, the regularity estimate holds: for all f € L?(Q)
lulz < Cr || f]2-
Let V}, be a finite element subspace of V' which satisfies
(e) inf |u—v|y < Cahluls Yue H*(Q).

VeV

Consider the following variational problem:

(4.14) find wu,eVy : alup,v)=(f,v) YveV,.
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Theorem 4.5. Under the conditions (a), (b), (c), (d) and (e), there are constants hg > 0 and
C > 0 such that for all h < hy, there is a unique solution to (4.14) satisfying

(4.15) |lu—up|l1 < C inf [[u—v|1 < Chluls,
veEVY

and

(4.16) lu—up| < Chllu—upl1 §0h2|u]2.

In particular, we may take

a N3 1
() L
2K/ C1C4CRr
Proof. We begin by deriving an estimate for any solution to (4.14) that may exists.

Using (a), (b) and the orthogonality
a(u—up,v) =0 YoV,
we have that for any v € Vj,

allu — uhH% < a(u—up,u —up) + K(u—up,u —up)
= a(u—up, u—v) + K|ju— up3

< Cllu — w1 lu = vl + K Ju — un|.

We apply standard duality techniques to bound ||u — wup|. Let w be the solution to the
adjoint problem satisfying (d):

a(v,w) = (u—up,v) YveV.
Then, for any wy, € Vj,
(u—up,u —up) = alu — up,w) = alu — up,w — wp)
< Chllu = uplly lw — wall1-
Using (d) and (e) yields
(u—up,u—up) <C1Co R ||u—up|i |wla < C1CACR R ||u — up|1 ||u — up|2-

Therefore
Hu - uhH S CchCRh Hu - uhHl'

Now, we have

allu —unllf < Cillu — uplly Ju — vy + K(C1CACR)* h* [lu — unll3.
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Thus, for A < hg where

1
ho = (%) 2 Clc'lACR’

we obtain
(4.17) allu —up|3 <20 |u—v|1 YveE V.

This yields (4.15) and (4.16) follows (4.15).

So far, we have been operating under the assumption of the existence of a solution uy. Since
(4.14) is a finite dimensional system having the same number of unknowns as equations,

uniqueness implies existence.

Set f = 0. Then, v = 0 from (d). Also, (4.17) implies that u, = 0 as well, provided h is
sufficiently small. Hence, the problem (4.14) has unique solution for h sufficiently small,

since f = 0 implies up, = 0. O
4.7 Generalized Galerkin Method
Consider the generalized Galerkin method
(4.18) find up eV Ap(up,vp) = Fn(vp) Yup € Vy
associating to the homogeneous Dirichlet problem:
Lu=-V-AVu=f in Q.

Let V = H}(Q) and Vj, = XF N HL(Q), k =1,2,3.

Consider the numerical integration:
M
fodr= 03 [ wpnoltys) de = Qule)
Q KeTp, j—17K
where the weights w; x and the nodes b; i are derived from a quadrature formula defined on
the reference element K. More precisely, these weights and nodes are defined as

wj i = |det Bg|j, bjx = Tk (b)),

where w; and I;j are the weights and nodes of the quadrature formula chosen on K, and Tk (x) =
BgZ + by is the affine map from K onto K.

Note that, with p(z) = ¢(2) for all z = Tk (z), = € K,

/K<p(x) dx = \det(BK)’/k@(i’) dz.
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Define
Frn(vp) = Qn(fon), Anp(up,vn) = Qrn(AVuy, - Vo).
Due to the presence of pointvalues, both A, and F;, should now be defined on V}, and not on
V. We need to assume that the coefficients of both the operator L and the right hand side f
are continuous functions on €.
Let K be an d-simplex. Denote by
b; : the vertices fori =1,-,d+1,
Bij : the midpoints of each side for é,5 =1,--- ,d+ 1,
by : the center of gravity of K, i.e., by := n+1 ZdH b

The following numerical quadrature formulae are exact on Py:

/ @ dx ~ meas(K) ¢(by), k=1
K

i=1 1<i<j<3
To check these, let 5\1(:U), 1 <i<d+ 1, denote the barycentric coordinates of a point z with
respect to the vertices of the n-simplex K.
Then, for any integers a; > 0 (1 <i < d+ 1), one has (show exercise 4.1.1 in Ciarlet)

oapl- - ageqld! .

4.19 A (2 A a1 df = K).
(4.19) /K @ A ()74 i = O e ()
To show the first formula, let

d+1 o

o= @(bj))v

j=1

be any polynomial of degree < 1. Then, we have
meas( K dH . . .
/Rgé(ﬁ:) di = — == Z(p b;) = meas(K) o(by).

The uniform coerciveness of Ay using the above three quadrature formulae is given in Ciarlet,
pp- 193-196. Under the assumption that Ay is uniformly coercive in V}, X V},, the error estimate
is given in Theorem 3.7.

To check the consistency errors define the quadrature error

L
Ex(p) == / pdr = wjk o(b k).

7j=1

The following theorem is given in Theorem 4.1.4 and 4.1.5 of Ciarlet:
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Proposition 4.6. Assume that the quadrature formula on K is exact on Por_o. Then there
exists a constant C, independent of h, such that for all K € T,

|Exc(aDipD;q)| < C hi llally.os k) gl

for any a € Wh>(K), p,q € Py, i,j = ,d, and

1
|Ex (fp)| < C hi [meas(E)]2 || fllwr.o i) 1Pl 5
for any f € WF>®(K), p € Py.

Theorem 4.7. Let T;, be a reqular family of triangulations.
Assume that the quadrature formula on K is exact on Par—o and that its weights w; are
positive. If the solution u € H*T1(Q), the coefficients a;; € W (Q) and the datum
f € Wh(Q), then there exists a constant C independent of h such that

d

k
lu —unlls < CR* |fulier + llullier Y llaigllwrs@) + 1 lwrse@)
i,j=1

Proof. Recall the first Strang Lemma:

1 A(wp,vp) — Ap(wp, v
(1+ )Hu—wth—i—f sup [AGoR, Vi) (0, Un)
ar 0#£vR €V th”v

1 Flon) - F
+ 1 [ (vn) = Fn(vn)l
O 0y, €V lvnllv

— < inf
| uth_wiféVh

Note that the approximation error:
inf |ju— < Ch¥|u .
w;lLEVh H UhHl - | |k !

Using the previous proposition, we have

A 00— An(mh o € 30 3 B (o Dymh(w) D, )|

KT, ij=1

( bells e e 18 ()

laijllwroey | | D Imh(w)llkxlvnli
KeTy,

:

2

i,K \Uh‘l,ﬂ-

o
:

<O | > aigllwres () > llmh(w)
1,j=1

KeT,
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In addition, writing 7% (u) as 7F(u) — u + u, we obtain

S llrh @R <23 (luls + llu = mh @) )

KeT, keTy,
<2 llullio+ D lu—mhwlix
keTy,

< C (Jullf + 1 [ulfyr o) < Cllulli.
Also we have

|F(vn) = Fuon)| < - |Bx(fon)| < C h* [meas()]2 | fllwnoe ) llonllr.
keTy,

Thus, by the first Strang Lemma 3.7 we obtain the conclusion. O
(Example on P; finite element space, i.e., k = 1).

Let 7, be a regular family of triangulations.

The three points quadrature formula on K is exact on Py. If the solution u € H2(f2), the
coefficients a;; € W1>(Q) and the datum f € W1*°(Q), then there exists a constant C
independent of A such that

d
fu—wunlls < Ch [Juls + llullz 3 llag oy + 1 lwrs o)
ij=1
4.8 Condition number of Stiffness matrix and Inverse inequality

Let Ay, be the stiffness matrix given by
Afe : Afe(%]) = -A((Pj, ()01>

where ¢; are basis functions of V}, C X }'f

Recall that the condition number y(B) of a non-singular matrix B is given by
X(B) = B[ B~

where || - || is a suitable matrix-norm.
When B is symmetric, we have || B|l2 = p(B) where p(B) denotes the spectral radius of B.
In addition, if B is positive definite, then

)\max (B)

x2(B) = Xsp(B) == m

In this subsection, we will show that

Xsp(Afe) = O(h_2)
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Proposition 4.8 (n” Mn ~ hin'n).
Let Ty, be a quasi-uniform family of triangulations of Q. Then there exist positive constants

C1 and Cy such that for each vy € Vy,
h
2 < Jonl < Cok? 2, o =3 myes.

Proof. Since 7}, is quasi-uniform, it is enough to show that for any element K

M
Cy hd Zn] < / vide < C;h}l(Zn?,
j=1
where M is the number of degrees of freedom associated with K.
For the reference element K, set © = vj, o Tx. Then, & = >_;Mj¢j- Note from (4.19) that

/ Zm/ 90]+2Z77m]/ Gi;

1<)
d! meas(K d ! meas(K) 9 2
=2 ) =Gl : ,
2+d) Z"J+ ;Wh 2+d) zj:”ﬂL zj:%

Thus we have
M M
SN RIS 9
j=1 K j=1
Using the last inequality together with the fact that

meas(K)

meas(K)

| iit= [ @oT? = jaet B [ 5

we have the conclusion. O

chd < |det Bg|= < Ché

and

Proposition 4.9 (Inverse Inequality for piecewise polynomials).
Let Ty, be a quasi-uniform family of triangulations of Q. Then there exist positive constants

Cs3 such that for each vy, € Vj,
[Vor)1? < C3h™ [Jon]®.
Proof.  Since Pk(.f( ) is finite dimensional, we have by the equivalence of norms that

IVall} 7 < 101} x < Cllolly o Vo € Pr(K).
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With © = vy, o Tk, we have from Proposition 2.6 and 2.7 that
IVonllg x < CIIBEI - | det Be| - V5 o < CIIBE[I* - | det Bx| - [[0]]] 4
C
< OB opl2 x < —— llopll? 5.
1B I - llonllo i e lonllo,x

Since 7, is a quasi-uniform family of triangulations, we have the conclusion. O

Writing v, = 3 n;¢;, we have

(Afem,m)  A(vg, Uh).

mz  [nf?

Since A(+, ) is continuous and coercive,

(Afena 77)

aCyh? < 5
7]

<y Cyh? (14 C3h™?).
Assume that Ay, is symmetric and positive definite. Then, we have
aCrht <A\ <~yCyh? (14 C3h™2), for any eigenvalue A of Age.

Hence, the condition number of A, has the following bounds:

)\max(Afe) '702 -2 -2
Xopl(Age) = T2 S gy (LT Gl =007

The spectrum of A(-,-) is defined as the set of u € R such that there exists an eigenfunction
wp, € Vi, wp, # 0, satisfying

A(wn,vp) = p(wh,vp) Yo € V.

Thus, if (4, wp) is an eigenpair, then we have

Alwn,wn) _ lonll? _

=u< _’y(l—i—Cghiz).
w2 Jwll?

The convergence properties of Conjugate Gradient iteration is reflected by the estimate

|6k|A <9 XSP(A) -1 |€0|A
B Vxsp(A) +1 7

where e¥ denotes the error of k-iterations and |e|% = (Ae, €) denotes the vector norm.
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4.9 Finite Elements with Interpolated Boundary Conditions

Let © C R? be a bounded domain with smooth boundary, and 7}, be a triangulation of €2, where
each triangle at the boundary has at most one curved side.

Assume that there exists p > 0 such that for each triangle K € 7, we can find two concentric
circular discs D and Dy such that

diam Do
. < p.
diam D1

Dy CKCDy and
Using the proof of Lemma 4.5.3 in [Brenner and Scott] that

(4.20) 16l gy < Cp (diamDa) ™ 8l (py) Vb € Py,

We consider the Lobatto quadrature formula. Let the polynomial Ly (&) of degree k be defined
by

b = (&) )

L (&) has k distinct roots 0 =&y < & < -+ < &1 = 1.
For each j (0 < j <k —1), let P; be the Lagrange interpolating polynomial of degree k — 1
such that P;(&;) = 0;5, and let

1
wj:/o Pj(z)dz.

Lemma 4.10. We have

Corollary 4.11. We have

h k—1
/0 f@)de =hY w; f(hé)| < Cuh* P2 (@) | peomy Y f € C*F72([0,R)).
j=0

For each boundary edge
e={x(s) : $ € [Se,Se + he], s is arc elngth},

let the boundary nodes be x(se + heéj), j =0,k — 1.
Define the finite element space Vj:

Vi ={v € C%Q) : v|x € Px_;and v vanishes at the boundary nodes}.

Let
a(u,v) = (Vu, Vo) for wu,v €V := H}(Q).



60 4 GALERKIN APPROXIMATION OF ELLIPTIC PROBLEMS

We consider the variational problem
find weV : a(u,v)=(f,v) YveV,
and the discrete variational problem
find upbeVy : alup,v)=(f,v) VveV,.
By Green’s Theorem, we have that for any w € V},,

a(u — up,w) = a(u,w) — (f,w) = (—Au,w)—i—/ (n-Vu)wds — (f,w)

o2
:/ (n-Vu)wds.
o0

Lemma 4.12. Let K be a triangle with a curved edge e. Assume that u € W2K=Y(K), and

w € Pr_1 vanishes at the Lobatto nodes along e. Then we have
| /e(n V) wds| < Clop B2 (diamDs) ™ [l s e, - 0l an
where he = length of e.

Proof. Let s denote arc length. Using parameterization z(s), 0 < s < he, and (4.20) yields

he
/0 (- Vu)(z(s)) w(z(s)) ds

/6(n-Vu)wd5

< Gk hik‘l n- VU”W(EC{C*?(K) ||w”W§;1(K)

< G h2 (diam D) ™ ullyy s+ gy 110

Lemma 4.13. Assume that u € W2F=1(Q). For small h and fived k, we have

|a(u — up, w)| L

sup <C,hk2 ||u|]W§§_1(Q).

weVi\{0} |wl|1

Bllolls < [o + \/ v
o0

Lemma 4.15. For h small enough, we have

Lemma 4.14. We have
Vo e HY(Q).

a(v,v) > v |v|? Vv e V.

Theorem 4.16. Assume that u € W2F1(Q) and (4.20) holds for a p > 0 independent of h.

Then we have the following error estimate
k—1
= unlls < Cp B [l yyanes g,

The last estimate also holds for u € H*(S).
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4.10 Isoparametric Polynomial Approximation

Let Q be a smooth domain in R? and let Qj, be a base polyhedral domain which is close to Q.
Let V}, be a base finite element space defined on €. (e.g., Px_1 finite element space on p.)
We construct a one-to-one continuous mapping
Fp, : Qp — R™  where each component F},; € Vi
The resulting space
Vi, = {v (Fhfl(x)) s x € Fr(Qp), v e Vh}
is called an isoparametric-equivalent finite element space.
Let 73, denote corresponding triangulations consisting of simplices of size at most h. Then,

it is possible to construct piecewise polynomial mappings, F}, of degree k — 1 which

a) equal the identity map away from the boundary of €y,

b) have the property that the distance from any point on 052 to the closet point on 9F}, ()
is at most C h¥,

¢) 1m, llwx (,) < C and HJE;HW&(Qh) < C, independent of h.

Note that Q is only approximated by F}(€2,), not equal.

We assume that there is an auxilliary mapping F : Q) — € satisfying the above three
conditions a), b), ¢), and that F},; = Zj, F; for each component of the mapping.

Define

ah(v,w):/F(Q )VU-de;U
h\8éh

and define @y, : Q — Fy(Qy) by ®p(z) = Fp (Ffl(x)) Then, by using chain rule we can write

ap(v,w) = /Q (Jcph(:c)_TVﬁ(x)) - (J@h(x)_TVQI}(a:)> | det Jg, ()] dx,

where 0(x) := v (®p(x)) for any function v defined on Fj, ().
The variational problem is to find uy € V}, such that

an(un,vn) = (f,v)F, )  Yn € Vi
Theorem 4.17. For h sufficiently small, we have the following error estimate:
o=l < O (Julla + 1flwo )
where Up(z) := up, (Pp(x)).

This can be improved w.r.t. the norm on f:

= il < 1 (lulla + 1 l-2a ).
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5 Mixed Method

5.1 Abstract Formulation

Let X and M be two Hilbert spaces, with norms || - ||x and || - [|ar, respectively. Let X" and M’

be their dual spaces, and introduce two bilinear forms
a(,) : X x X - R, b(,-) : X xM—R
which are continuous:
la(w, V)| < vllwllx [[vlx,  [b(w,q)] < él[wlx llqllar

for each w,v € X and ¢ € M.
Consider the following constrained problem :  find (u,p) € X x M such that

a(u,v)+b(v,p) = (f,v) Vv e X,

(5.1)
b(u,q) =(9,9) Vqge M,

where f € X’ and g € M’, and (-,-) denotes the duality pairing between X’ and X or M’ and
M.
We associate to a(-,-) and b(-,-) the operators A € L(X; X’) and B € L(X; M') defined by

(Aw,v) = a(w, V) Vw,vev,
(Bv,q) =b(v,q) VveV,geM.

Denote by B’ € L(M; X') the adjoint operator of B:
(B'q,v) = (Bv.q) =b(v,q) VYveV,geM.
Thus we can write (5.1) as:  find (u,p) € X x M such that

Au+Bp=f in X/,
(5.2)
Bu=yg in M.
Define the affine manifold
X9:={veX:bv,q=1(9,q VYqge M}

Clearly X° = ker B is a closed subspace of X. We can now associate to problem (5.1) the

following problem:

(5.3) find ueX? : a(uv)=((fv) Vv e X
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That is, if (u,p) is a solution to (5.1), then u is a solution to (5.3).
We will introduce suitable conditions ensuring that the converse is also true, and that the
solution to (5.3) does exist and is unique, thus construction a solution to (5.1).

Denote by XS the polar set of X0,
0._ I _ 0
X, ={peX :(uv)=0 Vve X'}
Since X° =ker B, X{) = (ker B),. Let us decompose X as follows:
X=X (X%

B is not an isomorphism form X onto M’, as in general ker B= X% # {0}.
We are going to introduce a condition which is equivalent to the fact that B is indeed an

isomorphism from (X°)* onto M’ (and moreover B’ is an isomorphism form M onto XJ).

Proposition 5.1 (Compatibility Condition). The following statements are equivalent:

a) there exists a constant * > 0 such that

(5.4) VgeM IveX,v#0 : blv,q) >0 vlx gl

b) B' is an isomorphism from M onto XS and Inf-Sup Condition holds

Blq,v
(5.5) |B'qllx: := sup < )
0£veEX vl x

> B Nlqllar Ve M;
¢) B is an isomorphism from (X°)*+ onto M’ and

Bv,q
(5.6) |Bv||pr := sup < )
ozqem |lalln

> g vix vve (xO)L.

Proof. Clearly (5.4) and (5.5) are equivalent. We have only to prove that B’ is an isomorphism
from M onto X;S' Clearly (5.5) shows that B’ is an one-to-one operator from M onto its
range R(B’), with a continuous inverse. Thus R(B’) is a closed subspace of X'. It remains

to be proven that R(B’) = XS . Applying the Closed Range theorem gives
R(B') = (ker B), = X}.

Hence, a) and b) are equivalent.

cf) N(B') = R(B),, N(B) = R(B'),, N(B'), = R(B), N(B), = R(B).

For each p € ((XO)J-)/ we associate i € X’ satisfying

(1, v) = (n, PTv) VveX,
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where P is the orthogonal projection onto (X%)*. Since Ptv =0 for v € X°, ji € X;?-
Using the fact that

(i, v) (n, PLv) (p, PLv) (1, v)
il xr = sup = Sup S S SUp ST = ==HMH(X0L)
vex IVlx  vex IVIx T vex IPHvilx  vexoye IVIx (X0)
and
,V ,Plv (L, v (1
Il (xoyeyr = sup v gy PV ) Y
(X0) vexorl IVllx  vexoyr IvIx  vexoy IVIx ~ vex IvIIx

yields that u — [ is an isometric bijection from ((XO)L)/ onto Xz?‘ Hence, XS can be

identified with the dual of (X°)%. As consequence, B’ is an isomorphism from M onto
((XO)J‘)I satisfying
, 1
1(B") Ml eexomnn < 7

if and only if B is an isomorphism from (X°)* onto M’ satisfying
1B~ 2aryx0yty < 5*
This proof is now complete. O
Theorem 5.2. Assume that the bilinear form a(-,-) is continuous and coercive on X°:
a(v,v) > alv|% vv e X°.

Assume further that the bilinear form b(-,-) is continuous and the compatibility condition

(5.4) holds.

Then, for each (f,g) € X' x M’ there exists a unique solution u to (5.3), and a unique
p € M such that (u,p) is the unique solution to (5.1).

Furthermore, the map (f,g) — (u,p) is an isomorphism from X' x M' onto X x M, and

1 o+
lullx < (anXf — HgnM/)
a+y v(a+7)
Il < ( I+ 20E ngM,>

Proof. Uniqueness of the solution to (5.3) is a straightforward consequence of the coerciveness.

From (5.6), there exists a unique u® € (X%)* such that Bu’ = g and

1
Ju’|x < 7 gl s

Thus, we rewrite (5.3) as

(5.7) find acX® : a(a,v)=(v)—a’v) Vv e X
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and define the solution u € X9 to (5.3) as u = @+ u". The existence of a unique solution

to (5.7) is assured by Lax-Milgram lemma, and moreover

. 1
falls < & (Ielhe + 7 0l )
Let us now consider problem (5.1). As (5.7) can be written in the form
(Au—f,v) =0 Vv e X%

we have (Au —f) € Xg. Moreover, from (5.5) we can find a unique p € M such that

Au—f = —B'p, i.e., (u,p) is a solution to (5.1) and satisfies

1
Ipllar < 5 [Au — £]| .

Each solution (u,p) to (5.1) gives a solution u to (5.3), also for problem (5.3) uniqueness
thus holds. Finally, summing up inequalities the proof is completed. O
The approximation of the abstract constrained problem (5.1) is as follows. Let X}, and M}
be finite dimensional subspace of X and M, respectively. The discrete constrained problem is

to:  find (up,pn) € Xp x My, such that

a(up,v) + b(v,pp) = (f,v) Vv e X,
b(up,q) = (9,9) Vg€ My,

(5.8)

Define the space
Xj =A{vn € Xp : b(vn,q) = (9,9) Vg€ My}.

Since Mj, is in general a proper subspace of M, X ¢ X9.

The finite dimensional problem corresponding to (5.3) is to

(5.9) find w, e Xy : a(u,,v)=(fv) VvelXj

5.2 Analysis of Stability and Convergence

Theorem 5.3 (Stability). Assume that the bilinear form a(-,-) is continuous and coercive on
0.
Xho
a(vh,vh) > ap ||Vh”%( Vv, € X}?
Assume further that the bilinear form b(-,-) is continuous and the following compatibility

condition holds: there exists a constant B, > 0 such that

(5.10) Van € M vy € Xp, vip #0 0 b(Vi,qn) 2> Bu |l villx llanllas
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Then, for each (f,g9) € X' x M’ there exists a unique solution (up,pp) to (5.8) which

satisfies
1 ap + 7y
uhX§<fX/+ gM'>
[[a | on ]| A lgll
1 (ap+7 y(an +7)
T e e T
Bn\ ap anBh

where both oy and By, are independent of h, this is a stability result for (an,pp).
The proof is similar to the preceding Theorem. But, note that X ,? ¢ X 0 and that the compati-
bility condition (5.4) does not imply (5.10) since X}, is a proper subspace of X.

Theorem 5.4 (Convergence). Let the assumptions of two preceding Theorems be satisfied.

Then, we have the error estimates

. N o .
||u—uhuxs(1+”) inf Jlu—villx + - inf [p—anlar,

Qp ) viexy Op qn €My,
. . 1) ) )
Hp—phnMs”(lﬂ) in ||u—vh|x+<1++ I ) inf [lp— anlr.
B anp ) viexy Brn  anPh) aneMy

Moreover, the following estimate holds

0
inf lu—vpllx < (14— inf [Ju—wv|x.
=il < (14 5) int fu= vl

The convergence is optimal if both oy, and By, are independent of h.
Proof. Take v, € X}, vi € XJ and g, € My. By subtracting (5.8)1 from (5.1); it follows
a(uy — vy, vi) +0(vi, ph — qn) = a(a — vy, v) + b(vVi, p — qn).

Choosing v, = (u, — v}) € X)), we have

1
lan — villx < ah(vllu—V?‘LllX L 5lp qhHM>,

and consequently the first estimate of the theorem holds true.

For each ¢, € M}, we find

1 b(Vh,Ph — qn
lon — anllm < = sup b(vn. pn — n)
B otvrex,  |IVallx

By subtracting (5.8)2 from (5.1)3 it follows

b(Vh,ph — qn) = a(u —up, vp) + b(Vi, D — qn).
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Combining this with the last inequality and using the continuities, we obtain
1
IPh = anllar < N Yllu—arlx +6llp — anllm

which yields the second estimate of the theorem.

For each v, € X, from (5.10) and Proposition 5.1 (we similarly show that there exists an
isomorphism By, from (X,?)L to M, which has the similar properties in Proposition 5.1)

there exists a unique wy, € (X)) such that

(Bhwh, qn) = (Bh(w—vp),qn) or b(wp,qn) =bu—vy,q,)  YVan € My

and

1 Bywy, qn, 0
Iwallx <~ sup ADHWmdn) o O

Bh ognem,  Nlanllar B
Setting vj; := wy, + vp,, we have vi € XJ as b(v},qn) = b(u,qn) = (g, qn) for all g, € Mj,.

Furthermore,

%)
lu—villx < llu—valx + [wallx < (1 T m) lu = vallx.

Since vy, is arbitrary, this completes the proof. ]

(Spurious Modes). The compatibility condition (5.10) is necessary to achieve uniqueness of

pn. Actually it can be written as:
if g5, € My, and b(vp, q,) = 0 for each v, € X, then ¢, = 0.
Thus, if (5.10) is not satisfied, there exists ¢ € My, gj # 0, such that
b(vip,q;) =0 Vv € Xp.

As a consequence, if (uy, pp) solves (5.8), also (up,pn + 7¢;;), 7 € R is a solution to the

same problem.

Any such element ¢j is called spurious (or parasitic) mode, as it cannot be detected by

the numerical problem (5.8).
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5.3 How to verify the uniform compatibility condtion

Lemma 5.5 (Fortin). Assume that the compatibility condition (5.4) is satisfied, and, more-

over, that there exists an operator r, : X — X such that

(i) b(v—rp(v),qn) =0 VveX, Vg,€M,

(i) [lra(V)lx <Cillvlx VveX,

where Cy > 0 doesn’t depend on h.
Then, the compatibility condition (5.10) is satisfied with § = 3*/C\.

For the connected domain €, let X = H}(Q)? and M = L3(Q), and let
V={veX: :HV.-v=0}
Then, V is a closed subspace of H& (Q)d and we have the decomposition:
HQ) =V oV V1 is orthogonal of V in HJ(Q)%.

From the arguments in p. 24 of [GR], we have
a) the operator V L3(Q2) — V,, is an isomorphism;
b) the operator V- : V4 — L2(Q) is an isomorphism
where V, = {f € H~Y(Q)? : (f,v) Vv € V} denotes the polar set of V.

For the bilinear forms
a(w,v) =v(Vw,Vv) and b(v,q)=—(q,V-v), v >0,
we have the following result:

Lemma 5.6 (Verfiirth). Let 75, be a quasi-uniform family of triangulations of Q. Assume that
M, ¢ H'(Q) N L2(Q) and there exists 3 > 0 such that

(5.11) Vg, € My, 3vi € Xp, va#0 o b(vi,an) > B1vallo lan-

Assume, moreover, that there exists an operator Ry, : X — X}, and a constant K > 0 such

that
(5.12) Iv = Bu(v)lo+ kv — Ra(W)li < Khivl;  wve X,

Then, the compatibility condition (5.10) is satisfied.
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Proof. Recall the inverse inequality:
Ivilli < Ch7Yvallo Vv € Xp.
The condition (5.11) implies that
(5.13) Vgno € My 3vp € Xp, v #0 o b(vp,qn) > Kih||vall1 llgnll1-
Note that for each g, € M), C L3(Q) there exists w € V+ C X = H}(Q)? such that
V-w=—q, and |w|i<Ka2lglo-

Thus from (5.12) we find

[Br(w)llr < [|1Bp(W) = wili + [[w]i < (1 + K)[wlly < Ka(1 + K)llgn]lo-

If gy is such that
llanllo < KK h|lgnl,

then (5.13) yields

K
> b .
b(Vh,qn) > KK Vel llgnllo

On the contrary, if
llanllo > K K2 h|lgn|1,

b(Ryp(wW),qn) = b(w,qn) + b(Rp(w) — w,qn) = (qn, qn) + b(Ru(w) — w,qn)
> llanllg — 1Br(w) = wlo lgnll = llanlls — K hwli llanlls
> |lqnll§ = KK2 b llanllo llan s

1
2 e ~ KK ‘
= Ky(1+K) (HQhHo 2h ||th1> | Ry (w)]|1

Combining this with (5.13), we are led to that for each g, € M), satisfying

llanllo < KKahllqnlli,

there exists zp, € Xy, zp # 0, such that

b(zn, qn) > QM llan ) l|zall1,

where

Q(f) = max{Klf, th”o—KKgf)}, €>0.

Kz(1+K)<
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We have the minimum of Q(§) over {£ > 0} at & = [|gn o/ (K2[K1(1+ K) + K]) and hence
(5.10) holds with 8 = K, (Ka[K1(1 + K) + K]) ", O

The condition (5.11) has been proven to hold to some finite element spaces frequently used in the
approximation of the Stokes problem (see for instance the Taylor-Hood or Bercovier-Pironneau

elements).



