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4 0 INTRODUCTION TO FINITE ELEMENT METHODS

0 Introduction to Finite element methods

Let Ω be a bounded open domain in Rd and ∂Ω = ΓD ∩ ΓN its Lipschitz continuous boundary.

Consider the simple model problem:

(D)





−∆u + b · ∇u + c u = f in Ω,

u = 0 on ΓD,
∂u
∂n = g on ΓN

where ΓD 6= ∅ and n is the unit normal vector to GN .

Let V = H1
D(Ω) where

H1
D(Ω) = {v ∈ H1(Ω) : v|GD

= 0 }.

Variational Formulation : Find u ∈ V = H1
D(Ω) such that

(V) a(u, v) = F(v) := (f, v) + 〈g, v〉GN
, ∀ v ∈ V

where the bilinear form a(·, ·) is given by

a(u, v) = (∇u,∇v).

Let Vh be a finite dimensional subspace of V = H1
D(Ω).

Galerkin Approximation : Find uh ∈ Vh such that

(Vh) ah(uh, vh) = Fh(vh), ∀ vh ∈ Vh,

where ah(·, ·) and Fh(·) are appropriate approximates of a(·, ·) and F(·), respectively.

The existence and uniqueness of the solution to (V) or (Vh) can be verified by Lax-Milgram

Lemma under conditions of the ellipticity and continuity of a(·, ·) or ah(·, ·), and the continuity

of F(·) or Fh(·).
Let {φj}Nh

j=1 be a basis of Vh. Then, for any uh ∈ Vh, it can be represented by uh =
∑Nh

j=1 ujφj .

By substituting uh and replacing v by φi in (Vh), we have the following linear system

AU = F,

where A(i, j) = ah(φj , φi), F (i) = Fh(φi), U(i) = ui.

Using direct methods or various iteration methods, we solve AU = F . (Jacobi, Gauss-Seidel,

CGM, Multi-Grid, GmRes)

According to the finite dimensional space Vh, we have the error estimates ‖u − uh‖0 and

‖u− uh‖1. (Interpolation errors, Projection errors, Strang Lemma)
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1 Preliminaries

1.1 Hilbert and Banach spaces

Let V be a (real) linear vector space.

Definition (Inner product). A scalar product (or an inner product) on V is a linear map

(·, ·) : V × V −→ R such that

(a) (w, v) = (v, w) ∀w, v ∈ V,

(b) (v, v) ≥ 0 ∀ v ∈ V,

(c) (v, v) = 0 iff v = 0.

Definition (Norm). A norm is a map ‖ · ‖ : V −→ R such that

(a) ‖v‖ ≥ 0 ∀ v ∈ V,

(b) ‖cv‖ = |c| ‖v‖ ∀ c ∈ R, v ∈ V,

(c) ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀ v, w ∈ V,

(d) ‖v‖ = 0 iff v = 0.

Definition (Norm equivalence). Two norms ‖ · ‖ and ||| · ||| on V are equivalent if there exists

C1, C2 > 0 such that

C1‖v‖ ≤ |||v||| ≤ C2‖v‖ ∀ v ∈ V.

Definition (Banach, Hilbert Spaces). A liner space V equipped with a scalar product (or a

norm) is called pre-Hilbert (or normed) space.

If any Cauchy sequence in a pre-Hilbert (or normed) space V is convergent, then V is

called a Hilbert (or Banach) space.

(Schwarz inequality). In any Hilbert space, the Schwarz inequality holds:

|(w, v)| ≤ ‖w‖ ‖v‖ ∀w, v ∈ V.

Definition (Dual Spaces). Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces. Denoted by

L(V ; W ) the set of linear continuous functional from V into W .

For L ∈ L(V ;W ), define the norm:

‖L‖L(V ;W ) = sup
v∈V
v 6=0

‖Lv‖W

‖v‖V
.

Then, L(V ; W ) is a normed space.
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• If W is a Banace space, then L(V ; W ) is also a Banach space.

• If W = R, then the space L(V ;R) is called the dual space of V and denoted by V ′.

• The bilinear form 〈·, ·〉 from V ′ × V into R defined by 〈L, v〉 := L(v) is called the duality

pairing between V ′ and V .

(Weak convergence).

A sequence {vn} in V converges to v weakly if 〈L, vn〉 → 〈L, v〉 as n →∞ for all L ∈ V ′.

(Weak* convergence).

A sequence {Ln} in V ′ converges to L weakly* if 〈Ln, v〉 → 〈L, v〉 as n →∞ for all v ∈ V.

1.2 Lp(Ω) Spaces

Let Ω be an open set in Rd and let 1 ≤ p ≤ ∞.

Define

‖v‖Lp(Ω) :=
(∫

Ω
|v(x)|p dx

) 1
p

, 1 ≤ p < ∞,

‖v‖L∞(Ω) := sup{|v(x)| : x ∈ Ω}.

Denote by

Lp(Ω) = {v : ‖v‖Lp(Ω) < ∞}.

The space L2(Ω) is a Hilbert space, endowed with the scalar product

(w, v)L2(Ω) :=
∫

Ω
w(x)v(x) dx.

Denote by

‖ · ‖ := ‖ · ‖0 = ‖ · ‖0,Ω = ‖ · ‖L2(Ω), (·, ·) := (·, ·)0 = (·, ·)0,Ω = (·, ·)L2(Ω).

(Hölder Inequality). For w ∈ Lp(Ω), v ∈ Lq(Ω) with 1
p + 1

q = 1, 1 ≤ p < ∞,

∣∣∣∣
∫

Ω
w(x)v(x) dx

∣∣∣∣ ≤ ‖w‖Lp(Ω) ‖v‖Lq(Ω).
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1.3 Distribution

Let C∞
0 := D(Ω) be the space of infinitely differentiable function having compact support.

Denote by, for α = (α1, · · · , αd) αi ≥ 0,

Dαv :=
∂|α|v

∂xα1
1 · · · ∂xαd

d

, v ∈ D(Ω)

where |α| = α1 + · · ·+ αd.

Definition (Distribution). A sequence vn ∈ D(Ω) converges to v ∈ D(Ω) if there exists a

compact subset K ⊂ Ω such that vn vanishes outside K for each n and for every α, Dαvn

converges to Dαv uniformly in Ω.

Denoted by D′(Ω) the dual space of D(Ω) and its elements are called distribution which

is continuous in the above sense.

• Each function w ∈ Lp(Ω) is a distribution:

v −→
∫

Ω
w(x)v(x) dx, ∀v ∈ D(Ω).

• The Dirac functional δ does not belong Lp(Ω) but it is also a distribution such that

v −→ δ(v) =
∫ ∞

−∞
δ(t)v(t) dt = v(0), ∀v ∈ D(Ω)

where the Dirac delta function is defined as follows. Define

δτ (t) =

{
1
2τ (−τ < t < τ)

0 (t ≤ −τ, t ≥ τ).

Then ∫ ∞

−∞
δτ (t) dt = 1.

Let

δ(t) = lim
τ→0

δτ (t).

Then ∫ ∞

−∞
δ(t) dt = 1 and δ(t) = 0 (t 6= 0).

c.f. Using the mean value theorem yields
∫ ∞

−∞
δ(t)v(t) dt = lim

τ→0

∫ ∞

−∞
δτ (t)v(t) dt = lim

τ→0

1
2τ

∫ τ

−τ
v(t) dt = lim

τ→0
v(t∗) = v(0).
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Definition (Derivative of a distribution). Let α be a non-negative multi-index and L ∈ D′(Ω).

Then DαL is the distribution defined as

〈DαL, v〉 := (−1)|α|〈L, Dαv〉, ∀v ∈ D(Ω).

• A distribution is infinitely differentiable.

• When L is a smooth funtion, the derivatives in the sense of distribution coincides with the

usual derivatives.

• Define the Heaviside funtion H as

H(x) :=

{
1, x ≥ 0,

0, x < 0.

Then H ′ = δ in the distribution sense,

〈H ′, v〉 = −
∫

R
H(t)v′(t) dt =

∫ ∞

0
v′(t) dt = v(0) = 〈δ, v〉, ∀v ∈ D(Ω).

1.4 Sobolev Spaces

Define

W k,p(Ω) := {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), |α| ≤ k}

and the corresponding norms

‖v‖k,p,Ω =


 ∑

|α|≤k

‖Dαv‖p
Lp(Ω)




1
p

, 1 ≤ p < ∞,

‖v‖k,∞,Ω = max
|α|≤k

‖Dαv‖p
L∞(Ω)

and the corresponding semi-norms

|v|k,p,Ω =


 ∑

|α|=k

‖Dαv‖p
Lp(Ω)




1
p

, 1 ≤ p < ∞,

|v|k,∞,Ω = max
|α|=k

‖Dαv‖p
L∞(Ω).

Then, the space W k,p(Ω) is a Banach space.

When p = 2, denote by Hk(Ω) := W k,2(Ω).

The space Hk(Ω) is a Hilbert space with respect to

(w, v)k,Ω :=
∑

|α|≤k

(Dαw, Dαv)0,Ω.



1.4 Sobolev Spaces 9

Denote by

W k,p
0 (Ω) = C∞

0 (Ω) w.r.t. the norm ‖ · ‖k,p,Ω,

Hk
0 (Ω) = W k,2

0 (Ω),

W−k,p′(Ω) = the dual space of W k,p
0 (Ω),

H−k(Ω) = W−k,2(Ω) = the dual space of Hk
0 (Ω),

where

‖f‖W−k,p′ (Ω) = sup
v∈W k,p

0 (Ω)
v 6=0

〈f, v〉
‖v‖

W k,p
0 (Ω)

.

Define

H(div; Ω) = {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω)},

equipped with the norm

‖v‖H(div;Ω) :=
(‖v‖2

0,Ω + ‖∇ · v‖2
0,Ω

) 1
2 .

(W s,p(Γ) : Γ = ∂Ω).

‖v‖0,p,Γ =
(∫

Γ
|v(x)|p ds(x)

) 1
p

in W 0,p(Γ) := Lp(Γ),

‖f‖s− 1
p
,p,Γ = inf

v∈W s,p(Ω)
v|Γ=f

‖v‖s,p,Ω in W
s− 1

p
,p(Γ).

The space H− 1
2 (Γ) is the dual space of H

1
2 (Γ) := W

1
2
,2(Γ) and

‖f‖− 1
2
,Γ = sup

v∈H
1
2 (Γ)

v 6=0

〈f, v〉
‖v‖ 1

2
,Γ

.

Denote by C0(Ω) the space of all continuous functions in Ω and

Cm(Ω) = {u ∈ C0(Ω) : ∂αu ∈ C0(Ω) ∀|a| ≤ m},
Cm(Ω̄) = {u ∈ Cm(Ω) : ∂αu are bounded and uniformly continuous on Ω∀|a| ≤ m},

Cm,1(Ω̄) = {u ∈ Cm(Ω̄) : ∂αu are Lipschitz continuous in Ω̄ ∀|a| ≤ m},

equipped with the norms

‖u‖Cm(Ω̄) = max
0≤|α|≤m

sup
x∈Ω̄

|∂αu(x)|,

‖u‖Cm,1(Ω̄) = ‖u‖Cm(Ω̄) + max
0≤|α|≤m

sup
x,y∈Ω
x 6=y

|∂αu(x)− ∂αu(y)|
‖x− y‖ .
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(Dense of Sobolev spaces).

1. D(Ω) = C∞
0 (Ω) is dense in W k,p

0 (Ω), (1 ≤ p < ∞, k ≥ 0).

2. D(Ω) = C∞
0 (Ω) is dense in Lp(Ω), (1 ≤ p < ∞).

3. C∞(Ω̄) is dense in W k,p(Ω), (1 ≤ p < ∞, k ≥ 0) if Ω is Lipschitz domain.

4. Ck(Ω̄) is dense in W k,p(Ω), (1 ≤ p < ∞, k ≥ 0) if Ω is Lipschitz domain.

1.5 Some Results

Definition (Lipschitz continuous). A function f is Lipschitz continuous on D if there exists

L > 0 such that

|f(x)− f(y)| ≤ L |x− y| ∀x, y ∈ D.

Definition (Lipschitz Domain). A domain Ω in R is called a Lipschitz domain if there are

bounded open sets G1, · · · , Gk such that

i) ∂Ω ⊂ ∪k
j=1 Gj ,

ii) for every j, Gj ∩ ∂Ω is the graph of a Lipschitz continuous function ϕj satisfying

Gj ∩ epiϕj ⊂ Ω.

For examples, triangles, parallelograms, discs, annuli, parallelepipeds, balls, polygons and

polytopes are all Lipschitz domains.

(Trace Theorem). Let Ω be a bounded open set of Rd with Lipschitz continuous boundary ∂Ω

and let s > 1
2 .

(a) There exists a unique linear continuous map γ0 : Hs(Ω) −→ Hs−1/2(∂Ω) such that

γ0v = v|∂Ω for each v ∈ Hs(Ω) ∩ C0(Ω̄).

(b) There exists a unique linear continuous map R0 : Hs−1/2(∂Ω) −→ Hs(Ω) such that

γ0R0ϕ = ϕ for each ϕ ∈ Hs−1/2(∂Ω).

c.f. If Σ is a Lipschitz continuous subset of ∂Ω, then γΣ has the analogous results. And

‖v‖Lp(∂Ω) ≤ C ‖v‖1−1/p
Lp(Ω) ‖v‖

1/p
W 1,p(Ω)

, 1 ≤ p ≤ ∞.

(Normal Trace Theorem). Let Ω be a bounded open set of Rd with Lipschitz continuous

boundary ∂Ω and let s > 1
2 .

(a) There exists a unique linear continuous map γ∗ : H(div; Ω) −→ H−1/2(∂Ω) such that

γ∗v = (v · n)|∂Ω for each v ∈ H(div; Ω) ∩ C0(Ω̄)d.
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(b) There exists a unique linear continuous map R∗ : H−1/2(∂Ω) −→ H(div; Ω) such that

γ∗R∗ϕ = ϕ for each ϕ ∈ H−1/2(∂Ω).

Note that

H0(div ; Ω) := C∞
0 (Ω)d

H(div;Ω)
.

If ∂Ω is Lipschitz continuous,

H1
0 (Ω) = {v ∈ H1(Ω) : γ0v = 0},

H0(div ; Ω) = {v ∈ H(div; Ω) : γ∗v = 0},
H1

Σ(Ω) = {v ∈ H1(Ω) : γΣv = 0}.

(Poincaré Inequlity). Let Ω be a bounded connected open set of Rd and let Σ be a (non-empty)

Lipschitz continuous subset of ∂Ω. Then there exists a constant CΩ > 0 such that
∫

Ω
|v(x)|2dx ≤ CΩ

∫

Ω
|∇v(x)|2dx, ∀v ∈ H1

Σ(Ω).

(Green Formula and Divergence Theorem).

For all w, v ∈ H1(Ω),
∫

Ω

∂w

∂xj
v dx = −

∫

Ω
w

∂v

∂xj
dx +

∫

∂Ω
w v nj ds.

If w ∈ H(div; Ω), v ∈ H1(Ω),
∫

Ω
(div w) v dx = −

∫

Ω
w · ∇v dx +

∫

∂Ω
(w · n)v ds.

(Sobolev Embedding Theorem).

Let Ω be an open set of Rd with Lipschitz continuous boundary ∂Ω, and s ≥ 0, 1 ≤ p ≤ ∞.

Then, the continuous embeddings hold:

(a) If 0 ≤ sp < d, W s,p(Ω) ⊂ Lp∗(Ω), p∗ = dp
d−sp .

d = 2, p = 2 : H1/2(Ω) ⊂ L4(Ω)

d = 3, p = 2 : H1(Ω) ⊂ L6(Ω)

(b) If sp = d, W s,p(Ω) ⊂ Lq(Ω), p ≤ q < ∞.

d = 1, p = 2 : H1/2(Ω) ⊂ Lq(Ω), q ≥ 2,

d = 2, p = 2 : H1(Ω) ⊂ Lq(Ω), q ≥ 2,

d = 3, p = 2 : H3/2(Ω) ⊂ Lq(Ω), q ≥ 2,

(c) If sp > d, W s,p(Ω) ⊂ C0(Ω̄).

d = 1, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 1/2,

d = 2, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 1,

d = 3, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 3/2.
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Definition (Compact Operator). Let X and Y be Banach spaces.

An operator T : X −→ Y is compact if

i) T is continuous,

ii) for given any bounded sequence xn in X, there exists a subsequence xnk
such that

T (xnk
) is convergent in Y .

Note. Let V is compactly embedding to W . Then,

i) if un is bounded in V , then there exists a subsequence unk
which is strongly convergent

to a function u in W .

ii) un converges to u weakly in V =⇒ un is bounded in V and then there exists a subse-

quence unk
which converges to u in W .

(Compact Sobolev Embedding Theorem).

Let Ω be an open set of Rd with Lipschitz continuous boundary ∂Ω, and s ≥ 0, 1 ≤ p ≤ ∞.

Then, the following embeddings are compact:

(a) If 0 ≤ sp < d, W s,p(Ω) ⊂ Lq(Ω), 1 ≤ q < dp
d−sp .

d = 2, p = 2 : H1/2(Ω) ⊂ Lq(Ω), 1 ≤ q < 4,

d = 3, p = 2 : H1(Ω) ⊂ Lq(Ω), 1 ≤ q < 6,

(b) If sp = d, W s,p(Ω) ⊂ Lq(Ω), p ≤ q < ∞.

d = 1, p = 2 : H1/2(Ω) ⊂ Lq(Ω), 1 ≤ q < ∞,

d = 2, p = 2 : H1(Ω) ⊂ Lq(Ω), 1 ≤ q < ∞,

d = 3, p = 2 : H3/2(Ω) ⊂ Lq(Ω), 1 ≤ q < ∞,

(c) If sp > d, W s,p(Ω) ⊂ C0(Ω̄).

d = 1, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 1/2,

d = 2, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 1,

d = 3, p = 2 : Hs(Ω) ⊂ C0(Ω̄), s > 3/2.

(d) If p > 2d
d+2 , Lp(Ω) ⊂ H−1(Ω).

(e) Hk(Ω) ⊂ Hk−1(Ω), k ≥ 0.

(Gagliardo-Nirenberg Interpolation Inequlity).

max
a≤x≤b

|v(x)| ≤
(

1
b− a

+ 2
) 1

2

‖v‖ 1
2 ‖v‖

1
2
1 , ∀v ∈ H1((a, b)).
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(Interpolation Theorem).

Let Ω be an open set of Rd with Lipschitz continuous boundary ∂Ω. Let s1 < s2 be real

numbers and r = (1 − θ)s1 + θs2, (0 ≤ θ ≤ 1). Then, there exists a constant C > 0 such

that

‖v‖r ≤ C ‖v‖1−θ
s1

‖v‖θ
s2

, ∀v ∈ Hs2(Ω).

(Gronwall Lemma for IBVP). Let f ∈ L1(t0, T ) be a non-negative function, g and ϕ be con-

tinuous functions on [t0, T ].

If ϕ satisfies

ϕ(t) ≤ g(t) +
∫ t

t0

f(τ)ϕ(τ) dτ, ∀t ∈ [t0, T ],

then

ϕ(t) ≤ g(t) +
∫ t

t0

f(s)g(s) exp
(∫ t

s
f(τ) dτ

)
ds, ∀t ∈ [t0, T ].

In addition, if g is non-decreasing, then

ϕ(t) ≤ g(t) exp
(∫ t

s
f(τ) dτ

)
, ∀t ∈ [t0, T ].

c.f. We often use a form of

g(t) = ϕ(0) +
∫ t

0
ψ(s) ds, ψ(s) ≥ 0.
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2 Finite Element Approximation

2.1 Triangulation

Let Ω ⊂ Rd, d = 2, 3 be a polygonal domain, i.e., Ω is an open bounded connected subset such

that Ω̄ is the union of a finite number of polyhedron.

Conside a finite decomposition

Ω̄ = ∪K∈Th
K,

where

1. K is a polyhedron with the interior of K, Int(K), is non-empty;

2. Int(K1)∩Int(K2)= ∅ for each distinct K1,K2 ∈ Th;

3. if F = K1 ∩K2 6= ∅(K1 6= K2), then F is a common face, side, or vertex of K1, K2;

4. diam(K)≤ h for each K ∈ Th.

Here, Th is called a triangulation of Ω̄.

From now on, we assume that for each K ∈ Th,

K = TK(K̂) with TK(x̂) = BK x̂ + bK

where K̂ is a reference polyhedron and TK is a suitable invertible affine map with a non-singular

matrix BK .

(Triangle Finite Elements).

The reference polyhedron K̂ is the unit d-simplex, i.e., the triangle of vertices (0,0), (1,0),

(0,1) when d = 2, or the tetrahedron of vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1) when d = 3.

As a consequence, each K = TK(K̂) is a triangle or tetrahedron.

(Parallelepipedal Finite Elements).

The reference polyhedron K̂ is the unit d-cube [0, 1]d.

As a consequence, each K = TK(K̂) is a parallelogram when d = 2 or a parallelepiped

when d = 3.

If for each K ∈ Th the matrix BK defining the affine transformation TK is diagonal, the

triangulation is made by d-rectangles (Rectangular Finite Elements).

(Quadrilateral Finite Elements).

Dealing with general quadrilaterals or hexahedrons would require admitting that each

conponent of the invertible transformation TK is no longer an affine map but a linear

polynomial with respect to each single variable x1, · · · , xd. See Ciarlet.
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2.2 Piecewise Polynomial Subspaces

Denote by Pk the space of polynomials of degree less than or equal to k and Qk the space of

polynomials of degree less than or equal to k with respect to each variable x1, · · · , xd.

dimPk =

(
d + k

k

)
, dimQk = (k + 1)d, Pk ⊂ Qk ⊂ Pdk.

Define a space of vector polynomials

Dk = (Pk−1)d ⊕ xPk−1, (k ≥ 1),

where x ∈ Rd is the independent variable.

dimDk = (d + k)
(d + k − 2)!

(d− 1)! (k − 1)!
, (Pk−1)d ⊂ Dk ⊂ (Pk)d.

Define the space of triangular finite elements:

Xh = Xk
h := {vh ∈ C0(Ω̄) : vh|K ∈ Pk, ∀K ∈ Th}, k ≥ 1,

or the space of parallelepipedal finite elements:

Xh = Xk
h := {vh ∈ C0(Ω̄) : vh|K ◦ TK ∈ Qk, ∀K ∈ Th}, k ≥ 1.

Note that Xk
h ⊂ H1(Ω), ∀k ≥ 1.

Proposition 2.1. A function v belongs to H1(Ω) if and only if

(a) v|K ∈ H1(K) for each K ∈ Th,

(b) the trace of v|K1 is equal to the trace of v|K2 on F for each common face F = K1∩K2.

Proof. Using (a), define the function wj ∈ L2(Ω) such that

wj |K := Dj(v|K), K ∈ Th, j = 1, · · · , d.

By the Green formula, for each ϕ ∈ D(Ω),
∫

Ω
wjϕ =

∑

K

∫

K
wjϕ = −

∑

K

∫

K
(v|K)Djϕ +

∑

K

∫

∂K
v|KϕnK,j ,

where nK is the unit normal vector on ∂K. Since ϕ is vanishing on ∂Ω

and nK1 = −nK2 := n on a common face F = K1 ∩K2, by (b) we have

(2.1)
∫

Ω
wjϕ = −

∫

Ω
vDjϕ +

∑

F

∫

F
(v|K1 − v|K2)ϕnj

(
= −

∫

Ω
vDjϕ

)
.
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Hence, wj = Djv ∈ L2(Ω) and v ∈ H1(Ω).

If v ∈ H1(Ω), then we have
∫

K
|Dj(v|K)|2 ≤

∫

Ω
|Djv|2 < ∞

which implies (a). With wj = Djv, from (2.1)

∑

F

∫

F
(v|K1 − v|K2)ϕnj = 0 ∀ϕ ∈ D(Ω), j = 1, · · · , d.

This completes the proof (b).

Define the space for vector functions:

W k
h := {vh ∈ H(div ; Ω) : vh|K ∈ Dk ∀K ∈ Th}, k ≥ 1.

Proposition 2.2. Let v : Ω → Rd be such that v|K ∈ H1(K)d for each K ∈ Th.

Then, for K1,K2 ∈ Th

(a) v ∈ H(div ; Ω) if and only if (b) n · v|K1 = n · v|K2 on F = K1 ∩K2.

i.e., The traces of the normal components are the same on each common face F = K1∩K2

for K1,K2 ∈ Th.

Proof. Define w ∈ L2(Ω) such that

w|K := ∇ · (v|K) ∀K ∈ Th.

By the Green formula, if (b) holds, then for each ϕ ∈ D(Ω),

〈∇ · v, ϕ〉 = −
∫

Ω
v · ∇ϕ = −

∑

K

∫

K
(v|K) · ∇ϕ

=
∑

K

∫

K
∇ · (v|K)ϕ−

∑

F

∫

F
(n · v|K1 − n · v|K2)ϕ =

∫

Ω
wϕ.

(2.2)

Thus, ∇ · v = w ∈ L2(Ω) and v ∈ H(div; Ω).

If v ∈ H(div; Ω), w := ∇ · v ∈ L2(Ω). Since v|K ∈ H1(K)d, by Trace theorem the trace

on F is well defined, and using (2.2) we obtain

∑

F

∫

F
(n · v|K1 − n · v|K2)ϕ = 0 ∀ϕ ∈ D(Ω).

Hence, (b) holds.
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Figure 1: Degrees of freedom for triangular elements in 2D

2.3 Degrees of Freedom and Shape functions

In the constructing a basis for the space Xk
h , an important point is concerned with the choice

of a set of degrees of freedom on each element K (i.e., the parameters which permit to uniquely

idetify a function in Pk, Qk or Dk.

2.3.1 The Scalar Case: Triangular finite elements

In two dimensional space, to identify vh|K in Xk
h , when k = 1 we have to choose three degrees

of freedom on each element K, with the additional constraint that vh ∈ C0(Ω̄). The simplest

choice is that of the values at the vertices of each K.

Otherwise, if we consider

Y 1
h := {vh ∈ L2(Ω) : vh|K ∈ P1, ∀K ∈ Th},

we are free to choose the degrees of freedom on K as the values at three arbitrary points(not

necessarily coincident with the vertices).

(Discontinuous FEM). One can take as nodes three internal points, or else the midpoints of

each side without continuity at the midpoint.

(Nonconforming FEM). One can take as nodes at the midpoints of each side with continuity

at the midpoints.

When k = 2, we assume that the element degrees of freedom in Xk
h are given by the value

at the vertices and in the middle point of each side.

Denote the vertices of the triangle K by ai, i = 1, 2, 3, and the midpoints by aij , i < j,

i, j = 1, 2, 3.
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Figure 2: Degrees of freedom for triangular elements in 3D

Proposition 2.3. A function p ∈ P2 is uniquely determined by the six values p(ai), 1 ≤ i ≤ 3,

and p(aij), 1 ≤ i < j ≤ 3.

Proof. Since the number of the degrees of freedom is equal to the dimension of P2(= 6), we

have only to prove that p(ai) = p(aij) = 0 then p ≡ 0.

Note that the restriction of p over each side is a quadratic function of one variable vanishing

in three distinct points, hence p is vanishing over each side. Thus we can write

p(x) = cp1(x)p2(x)p3(x),

where pi(x) are linear functions, each one vanishing on one side of K. Since p ∈ P2, it

follows c = 0.

This choice of degrees of freedom guarantees that vh ∈ C0(Ω̄), since the degrees of freedom

on each side uniquely identify the restriction of vh on that side.

(Cubic elements k = 3). In similar way, one can prove that the degrees of freedom for a cubic

triangle elements are given by ten values at the following nodes:

a. the three vertices

b. two other nodes on each side, dividing it into three subintervals of equal length

c. the center of gravity

When d = 3, it is not difficult to see that the degrees of freedom are the values at the nodes

indicated in Figure 3.

A basis for Xk
h is now easily constructed. For the global set of nodes {aj}Nh

j=1 in Ω̄, if φi ∈ Xk
h

satisfies

φi(aj) = δij , ∀ i, j = 1, · · · , Nh,
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then φi is called a shape function or nodal basis function corresponding to the node ai.

Let K̂ be the reference triangle with three vertices a1 = (1, 0), a2 = (0, 1) and a3 = (0, 0).

Denote by a4, a5 and a6 the midpoints of a1 through a3.

In P1 elements, i.e., continuous piecewise linear functions, the baricentric coordinate correspond-

ing to the reference triangle K̂ is given by

λ1 = x, λ2 = y, λ3 = 1− x− y, and
3∑

i=1

λi = 1.

In P2 elements, i.e., continuous piecewise quadratic functions, the baricentric coordinate corre-

sponding to the reference triangle K̂ is given by

φ1 = λ1(2λ1 − 1), φ2 = λ2(2λ2 − 1), φ3 = λ3(2λ3 − 1),

φ4 = 4λ1λ2, φ5 = 4λ2λ3, φ6 = 4λ3λ1,
and

6∑

i=1

φi = 1.

2.3.2 The Scalar Case: parallelepipedal finite elements

The reference square K̂ = [0, 1]d.

Let us prove that a function in Qk is uniquely determined by its values at the nodes given

in Figure 3.

Proposition 2.4. If q ∈ Qk (k = 1, 2, 3) vanishes at the nodes, then q ≡ 0.

Proof. For the case of k = 1, the restriction of q to each side is a linear polynomial of one

variable. Hence q vanishes over each side and therefore it can be written as

q(x) = c1x1(1− x1)x2(1− x2),

which implies c1 = 0.

A similar argument applied to the cases k = 2 and k = 3 implies that q has the form

q(x) = c2x1(
1
2
− x1)(1− x1)x2(1− x2), k = 2,

or

q(x) = c3x1(
1
3
− x1)(

2
3
− x1)(1− x1)x2(1− x2), k = 3.

Since x3
1x

2
2 /∈ Q2 and x4

1x
2
2 /∈ Q3, it follows that c2 = c3 = 0.
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Figure 3: Degrees of freedom for parallelepipedal elements in 2D

2.3.3 The vector case

Let d = 2. Recall the space of vector functions:

W k
h := {vh ∈ H(div ; Ω) : vh|K ∈ Dk ∀K ∈ Th}, k ≥ 1.

On each, the dimension of Dk is (k + 2)k, e.g.,

(
k : 1 2 3

dim : 3 8 15

)
.

Also, it must hold that vh ∈ H(div ; Ω). Hence it is necessary and sufficient that

n · vh|K1 = n · vh|K2 on F = K1 ∩K2.

(Ex 1). Prove that (n · q)|F ∈ Pk−1 and ∇ · q ∈ Pk−1 for each q ∈ Dk.

The (Ex 1) suggests that k degrees of freedom can be given by the values of n · q at k distinct

points of each side. This is sufficient for the case k = 1.

Proposition 2.5. Let k = 1, 2, 3. Assume that q ∈ Dk is such that n · q vanishes at k distinct

points on each side of K. Assume moreover that

(2.3)
∫

K
q1 =

∫

K
q2 = 0 (if k ≥ 2)

and

(2.4)
∫

K
x1q1 =

∫

K
x2q1 =

∫

K
x1q2 =

∫

K
x2q2 = 0 (only if k = 3).

Then q ≡ 0.
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Proof. Since (n ·q)|F ∈ Pk−1, it vanishes on each side F of K. By the Green formula and (2.3),

(2.4), for each Ψ ∈ Pk−1 we have
∫

K
Ψ∇ · q = −

∫

K
∇Ψ · q +

∫

∂K
Ψn · q = 0,

since ∇Ψ ∈ (Pk−2)2 and k ≤ 3. As ∇ · q ∈ Pk−1, it follows that ∇ · q = 0 in K by

substituting Ψ = ∇ · q.

For q ∈ Dk, it can be written by q = pk−1 + xp∗k−1, where pk−1 ∈ P2
k−1 and p∗k−1 is a

homogeneous function of degree k − 1 (function consisting of only terms of the highest

degree k − 1). Then, we have

0 = ∇ · q = ∇ · pk−1 + 2p∗k−1 + x · ∇p∗k−1

= ∇ · pk−1 + (2 + k − 1)p∗k−1.

Thus, p∗k−1 ∈ Pk−2 and so p∗k−1 = 0, and consequently q ∈ P2
k−1.

Since ∇·q = 0, we can find a polynomial w ∈ Pk (unique up to an additive constant) such

that (see Helmholz decomposition below)

q = (D2w, −D1w).

Moreover, since (n · q)|F = 0, we can assume that w is vanishing on each side F , and

consequently

w(x) = c0p1(x)p2(x)p3(x),

where pi(x) are linear functions, each one vanishing on one side of K. If k = 1 or 2, then

by w ∈ Pk we have c0 = 0 and this completes the proof for k = 1 or 2. When k = 3, using

(2.3) and (2.4) we obtain for each r ∈ P2
1

0 =
∫

K
q · r =

∫

K
[(D2w)r1 − (D1w)r2] =

∫

K
w(D2r1 −D1r2).

Choosing r such that D2r1 −D1r2 = c0, it follows

c2
0

∫

K
p1p2p3 = 0.

Thus, c0 = 0 and q ≡ 0.

(Helmholz decomposition). d For a give q ∈ L2(Ω)2, it can be decomposed as

q = ∇u +∇× w ∈ H⊥ + H where ∇× w = (D2w, −D1w)t

where

H = {v ∈ H(div; Ω) : ∇ · v = 0, (n · v)|Γ = 0}
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and u ∈ H1(Ω)/R is the only solution of the Neumann’s problem

(∇u,∇µ) = (q,∇µ) ∀µ ∈ H1(Ω),

and w ∈ H1
0 (Ω) is the only solution of

(∇× w,∇× χ) = (q−∇u,∇× χ) ∀χ ∈ H1
0 (Ω). c

Note that

(∇× w, f)K = (w,∇⊥r)K if w = 0 on ∂K

where ∇⊥r = d2r1 −D1r2 denotes the formal adjoint of ∇×.

The construction of a basis of W k
h is some how less evident than for Xk

h .

Let {aj} be the set of all nodes Ω̄. Let us denote by
{

mj(v), j = 1, · · · , N1,h : the values (n · v)(aj)

m`(v), ` = N1,h + 1, · · · , Nh : the set of all K-moments of the function v.

Now, a basis of W k
h is constructed by requiring that

ms(φ) = δis, i, s = 1, 2, · · · , Nh.

2.4 The Interpolation Operator

Denote by

ai : the global nodes on Ω̄,

ai,K : the local nodes in K,

φi : the corresponding shape function to ai in Xk
h .

Define a local interpolation operator πk
K :

πk
K(v) :=

∑
v(ai,K)φi|K ∀ v ∈ C0(K),

and define an interpolation operator πk
h : C0(Ω̄) → Xk

h as

πk
h(v)|K = πk

K(v|K) ∀K ∈ Th, v ∈ C0(Ω̄). i.e., πk
h(v) :=

Nh∑

i=1

v(ai)φi.

Denote v̂ = v ◦ TK for any v ∈ Hm(K), where TK(x̂) = BK(x̂) + bK for each x̂ ∈ K̂.

Proposition 2.6. For any v ∈ Hm(K), m ≥ 0, we have v̂ = v◦TK ∈ Hm(K̂), and there exists

a constant C = C(m, d) such that

(a) |v̂|m,K̂ ≤ C‖BK‖m | det BK |− 1
2 |v|m,K ∀ v ∈ Hm(K),
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(b) |v|m,K ≤ C‖B−1
K ‖m |det BK | 12 |v̂|m,K̂ ∀ v̂ ∈ Hm(K̂),

where ‖ · ‖ is the matrix norm associated to the euclidean norm in Rd.

Proof. Claim (1)holds for smooth v.

Using the chain rule, with |α| = m

‖Dαv̂‖2
0,K̂

=
∫

K̂
|Dαv̂|2dx̂ ≤ C‖BK‖2m

∫

K̂
|(Dαv) ◦ TK |2dx̂

= C‖BK‖2m

∫

K̂
|Dαv|2|detBK |−1dx

= C‖BK‖2m|detBK |−1‖Dαv‖2
0,Kdx

Summation gives the conclusion (1).

(2) is similary followed by using |v̂|2
m,K̂

= Σ|α|=m‖Dαv̂‖2
0,K̂

.

Define

hK = diam(K), ρK = sup{diam(S) : S is a ball contained in K}.

The same quantities will be denoted by ĥ and ρ̂ when they are refered to the reference domain

K̂.

Proposition 2.7. The following estimates hold

‖BK‖ ≤ hK

ρ̂
and ‖B−1

K ‖ ≤ ĥ

ρK
.

Proof. We can write

‖BK‖ = sup|ξ|=1|BKξ| = 1
ρ̂
sup|ξ|=ρ̂|BKξ|.

For each ξ satisfying |ξ| = ρ̂, we find two points x̂, ŷ ∈ K̂ such that x̂− ŷ = ξ.

Since BKξ = TK x̂− TK ŷ, we deduce |BKξ| ≤ hK .

Hence ‖BK‖ ≤ hK
ρ̂ .

Similary, ‖B−1
K ‖ ≤ ĥ

ρK
.

Denote by

[πk
K(v)]∧ = πk

K(v) ◦ TK .

Using φ̂i = φi ◦ TK ,

[πk
K(v)]∧ =

MK∑

i=1

v(ai,K)(φi ◦ TK) =
MK∑

i=1

v(TK(âi))φ̂i = πk
K̂

(v̂).

Hence, in order to estimate for the seminorm [v − πk
K(v)] ◦ TK in Hm(K̂), we have to estimate

v̂ − πk
K̂

(v̂) in Hm(K̂).



24 2 FINITE ELEMENT APPROXIMATION

Proposition 2.8 (Bramble-Hilbert Lemma).

Let ˆ̀ : Hk+1(K̂) → Hm(K̂), m ≥ 0, k ≥ 0 be a linear continuous mapping such that

ˆ̀(p̂) = 0 ∀ p̂ ∈ Pk.

Then, for each v̂ ∈ Hk+1(K̂)

|ˆ̀(v̂)|m,K̂ ≤ ‖ˆ̀‖L(Hk+1(K̂);Hm(K̂)) inf
p̂∈Pk

‖v̂ + p̂‖k+1,K̂ .

Proof. Let v̂ ∈ Hk+1(K̂). For any p̂ ∈ Pk we have ˆ̀(p̂) = 0.

|ˆ̀(v̂)|m, K̂ = |ˆ̀(v̂ + p̂)|m, K̂ ≤ ‖ˆ̀‖L(Hk+1(K̂);Hm(K̂))‖v̂ + p̂‖k+1,K̂ ∀p̂ ∈ Pk.

Proposition 2.9 (Deny-Lions Lemma).

For each k ≥ 0, there exists a constant C = C(k, K̂) such that

inf
p̂∈Pk

‖v̂ + p̂‖k+1,K̂ ≤ C|v̂|k+1,K̂ ∀ v̂ ∈ Hk+1(K̂).

Proof. (Compactness argument)

Step1) Let us prove that there exists a constant C = C(K̂) such that

(1) ‖v̂‖k+1,K̂ ≤ C{|v̂|2
k+1,K̂

+
∑
|α|≤k(

∫
K̂ Dαv̂)2} 1

2

for each v̂ ∈ Hk+1(K̂). We proceed by contradiction. If (1) doesn’t hold, thenwe could

find a sequence v̂s ∈ Hk+1(K̂) such that

(2) ‖v̂s‖k+1,K̂ = 1

and

(3) |v̂s|2k+1,K̂
+

∑
|α|≤k(

∫
K̂ Dαv̂s)2 < 1

s2 .

Since the immersion Hk+1(K̂) ↪→ Hk(K̂) is compact, we can select a subsequence, still

denoted by v̂s, strongly convergent in Hk(K̂).

As a consequence of (3) v̂s is indeed a Cauchy sequence in Hk+1(K̂), therefore a function

ω̂ exists such that v̂s converge to ω̂ in Hk+1(K̂) and ‖ω̂‖k+1,K̂ = 1.

Moreover, by (3)
∫
K̂ Dαω̂ = 0 for |α| ≤ k and Dαω̂ = 0 for |α| = k + 1. This last relation

implies that ω̂ ∈ Pk and then ω̂ = 0. this is contradiction to ‖ω̂‖k+1,K̂ = 1.

Step2) For each v̂ ∈ Hk+1(K̂) we can construct a unique q̂ ∈ Pk such that
∫

K̂
Dαq̂ = −

∫

K̂
Dαv̂, ∀|α| ≤ k.
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Hence from (1) applied to v̂ + q̂ that Dα(hatv + hatq) = 0, we obtain

inf
p̂∈Pk

‖v̂ + p̂‖k+1,K̂ ≤ ‖v̂ + q̂‖k+1,K̂ ≤ C|v̂ + q̂|k+1,K̂ = C|v̂|k+1,K̂ .

Theorem 2.10 (Local interpolation error). If 0 ≤ m ≤ l + 1, 1 ≤ l ≤ k, then there exists a

constant C = C(K̂, πk
K̂

, l, m, d) such that

|v − πk
K(v)|m,K ≤ C

hl+1
K

ρm
K

|v|l+1,K ∀ v ∈ H l+1(K).

Note that high order interpolation on v do not give, in principle, better error estimates if

v is not regular enough.

Proof. First of all, let us remark that the Sovolev embedding theorem yields H l+1(K) ⊂ C0(K)

for k ≥ 1. Hence the interpolation operator πk
K is well-defined in H l+1(K). By previous

proposition,

|v − πk
K(v)|m,K ≤ C ‖B−1

K ‖m |detBK |
1
2 |v̂ − πk

K̂
(v̂)|m,K̂

≤ C
ĥm

ρK
m
|detBK |

1
2 |ˆ̀(v̂)|m,K̂

ˆ̀= I − πk
K .

Since

|ˆ̀(v̂)|m,K̂ ≤ ‖ˆ̀‖ inf
p̂∈Pk

‖v̂ + p̂‖k+1,K̂ ≤ C |v̂|k+1,K̂

≤ C ‖BK‖m |detBK |−
1
2 |v|k+1,K

≤ C
hk+1

K

ρ̂k+1
|detBK |−

1
2 |v|k+1,K .

Hence |v − πk
K(v)|m,K ≤ C

hk+1
K
ρm

K
|v|k+1,K .

Remark (L∞-interpolation error).

(a) The similar results hold for interpolation in the Sobolev space W k+1,p(Ω) p ∈ [1,∞].

(see Ciarlet)

(b) For 1 ≤ ` ≤ k, 0 ≤ m ≤ ` + 1− d
2 , d = 2, 3,

|v − πk
K(v)|m,∞,K ≤ C [meas(K)]−

1
2
h`+1

K

ρm
K

|v|`+1,K ∀ v ∈ H`+1(K).

(To prove) Using Theorem 2.10, H l+1(K̂) ⊂ Wm,∞(K̂), 0 ≤ m < l+1−d/2 and that

‖Dαv‖∞,K ≤ C‖B−1
K ‖m ‖Dαv̂‖∞,K̂ , |α| = m,

|v−πk
K(v)|m,∞,K ≤ C‖B−1

K ‖m|v̂−πk
K̂

(v̂)|m,∞,K̂ ≤ C

ρm
K

|v̂|l+1,K̂ ≤ Cmeas(K)−
1
2
hl+1

K

ρm
K

|v|l+1,K .
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(c) For 1 ≤ ` ≤ k, 0 ≤ m ≤ ` + 1,

|v − πk
K(v)|m,∞,K ≤ C

h`+1
K

ρm
K

|v|`+1,∞,K ∀ v ∈ W `+1,∞(K).

(To prove) Use Bramble-Hilbert and Deny-Lions lemmas and replace Hk+1(K̂) and

Hm(K̂) by W k+1,∞(K̂) andWm,∞(K̂)

Definition (Regular triangulation).

A family of triangulation Th (h > 0) is called regular if there exists σ ≥ 1 such that

max
K∈Th

hK

ρK
≤ σ ∀h > 0.

Theorem 2.11 (Interpolation error).

Let Th be a regular family of triangulations and assume that m = 0, 1, k ≥ 1. Then there

exists C, independent of h, such that

|v − πk
h(v)|m,Ω ≤ C h`+1−m |v|`+1,Ω ∀ v ∈ H`+1(Ω), 1 ≤ ` ≤ k.

Proof.

|v − πk
h(v)|2m,Ω =

∑

K

|v − πk
h(v)|2m,K

≤ C
∑

K

(
hl+1

K

ρm
K

)2 |v|2l+1,K

≤ C
∑

K

(hl+1−m
K )2 |v|2l+1,K , hk ≤ ρK σ

≤ C hl+1−m
K |v|2l+1,Ω.

Note that the restriction on the index m is due to the fact that the inclusion Xk
h ⊂ Hm(Ω)

holds only if m ≤ 1.

The construction of a finite dimensional space contained in H2(Ω) would require higher order

continuity across the interelement boundaries.

2.4.1 Interpolation Error: the vector case

Recall the space of vector functions:

W k
h := {vh ∈ H(div ; Ω) : vh|K ∈ Dk ∀K ∈ Th}, k ≥ 1.

To define the interpolation operator we must give a meaning to the point value n ·v at all nodes

ai ∈ Ω̄ and to all the K-moments ml(v).
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If v ∈ C0(Ω̄)d, this is easily doable.

But it will be useful to define the interpolation operator even in spaces of functions that are

not necessarily continuous.

Instead of the point values of n · v on a face FK of K, consider the following degrees of

freedom ∫

FK

n · qψ, ψ ∈ Pk−1,

which are called FK-moments.

Denote the global set of these FK-moments relative to a function v by ml(v), l = 1, · · · , N1,h

and denote the set of K-moments by ml(v), l = N1,h +1, · · · , Nh. Let ϕi be the shape functions

such that

ms(ϕi) = δis, i, s = 1, · · · , Nh.

Define the interpolation operator ωk
h : H1(Ω)d → W k

h by

ωk
h(v) :=

Nh∑

i=1

mi(v)ϕi.

Then, ωk
h(v) is the only one function in W k

h satisfying

mi(ωk
h(v)) = mi(v), i = 1, · · · , Nh.

Denote by mi,K(v), i = 1, · · · ,MK the set of K-moments and FK-moments relative to K. Define

a local interpolation operator

ωk
K(v) :=

MK∑

i=1

mi,K(v)ϕi|K , v ∈ H1(Ω)d.

We have

mi,K(v) = mi,K(ωk
K(v)), i = 1, · · · , MK

and

ωk
h(v)|K = ωk

K(v|K), ∀K ∈ Th, ∀v ∈ H1(Ω)d.

Let P k−1
K be the orthogonal projection in L2(K) onto Pk−1.

Then, we have an important property:

div(ωk
K(v)) = P k−1

K (div v), ∀v ∈ H1(K)d.

(Proof) Since div(ωk
K(v)) ∈ Pk−1, for each ψ ∈ Pk−1,

∫

K
ψdiv(ωk

K(v)) = −
∫

K
∇ψ · ωk

K(v) +
∫

∂K
ψ n · ωk

K(v)

= −
∫

K
∇ψ · v +

∫

∂K
ψ n · v =

∫

K
ψ · div v,
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owing to the fact that the moments of v and ωk
K(v) are the same, i.e,

mi,K(v) = mi,K(ωk
K(v)), i = 1, · · · ,MK . 2

Similarly we have

div(ωk
h(v)) = pk−1

h (div v), ∀v ∈ H1(Ω)d,

where pk−1
h is the L2(Ω)-orthogonal projection onto

Y k−1
h := {v ∈ L2(Ω) : v|K ∈ Pk−1 ∀K ∈ Th}.

This commutativity property is very important for the approximation theory in H(div; Ω), and

it turns out to be useful also when considering optimal error estimates for boundary value

problems. The introduction of the polynomial spaces Dk is in fact motivated by such a matter.

H1(Ω)d div−−−−−→ L2(Ω)

ωk
h ↓ ↓ pk−1

h

W k
h div−−−−−→ Y k−1

h

Define

v̂ := | detBK |B−1
K v ◦ TK .

Note that

v̂ ∈ H1(K̂)d if and only if v ∈ H1(K)d,

v̂ ∈ Dk if and only if v ∈ Dk.

For v ∈ H1(K)d, ψ ∈ H1(K),
∫

K̂
v̂ · ∇ψ̂dx̂ =

∫

K̂
|det BK |(B−1

K v ◦ TK)(Bt
K∇ψ ◦ TK)dx̂

=
∫

K
(B−1

K v)(Bt
K∇ψ)dx =

∫

K
v · ∇ψ,

where ψ̂ = ψ ◦ TK , and analogously
∫

K̂
ψ̂ div v̂ =

∫

K
ψ div v and then

∫

∂K̂
ψ̂ v̂ · n̂ =

∫

∂K
ψ v · n.

For each v ∈ H1(K)d,

ωk
K̂

(v̂) = [ωk
K(v)]∧

(
:= |det BK |B−1

K ωk
K(v) ◦ TK

)
.
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(Proof) We have to show that all K̂-moments and FK̂-moments of v̂ and [ωk
K(v)]∧ coincide. In

fact we have that any w ∈ (Pk−2)d,
∫

K̂
[ωk

K(v)]∧ · ŵ =
∫

K̂
| det BK |

(
B−1

K ωk
K(v) ◦ TK

) · ŵ =
∫

K

(
B−1

K ωk
K(v)

) ·w

=
∫

K
ωk

K(v) · (B−T
K w) =

∫

K
v · (B−T

K w) =
∫

K

(
B−1

K v
) ·w

=
∫

K̂
| det BK |

(
B−1

K v ◦ TK

) · ŵ =
∫

K̂
v̂ · ŵ,

and for any ψ̂ ∈ Pk−1,
∫

∂K̂
ψ̂ v̂ · n̂ =

∫

∂K
ψ v · n =

∫

∂K
ψ ωk

K(v) · n =
∫

∂K̂
ψ̂ [ωk

K(v)]∧ · n.

Proposition 2.12. For any v ∈ Hm(K)d, m ≥ 0, we have v̂ ∈ Hm(K̂)d, and there exists a

constant C = C(m, d) such that

(a) |v̂|m,K̂ ≤ C‖B−1
K ‖ ‖BK‖m | detBK | 12 |v|m,K ∀v ∈ Hm(K)d,

(b) |v|m,K ≤ C‖BK‖ ‖B−1
K ‖m | detBK |− 1

2 |v̂|m,K̂ ∀ v̂ ∈ Hm(K̂)d.

Theorem 2.13. If 1 ≤ l ≤ k and 0 ≤ m ≤ l, then there exists a constant C = C(K̂, ωk
K̂

, l, m, d)

such that

|v − ωk
K(v)|m,K ≤ C

hl+1
K

ρm+1
K

|v|l,K ∀v ∈ H l(K)d

and for each v ∈ H1(K)d with div v ∈ H l(K)

|div v − div ωk
K(v)|m,K ≤ C

hl
K

ρm
K

|div v|l,K ∀v ∈ H l(K)d.

Theorem 2.14 (Global Interpolation error).

Let Th be a regular family of triangulations and assume that k ≥ 1. Then there exists C,

independent of h, such that

‖v − ωk
K(v)‖H(div;Ω) ≤ C hl

(|v|l,Ω + |div v|l,Ω
)

for each v ∈ H l(Ω)d with div v ∈ H l(K), 1 ≤ l ≤ k.

2.5 Projection Operators

The interpolation operator gives optimal error estimates in Sobolev norms whenever the function

to be interpolated enjoys the minimal requirement to be continuous. In view of finite element

analysis, it is useful to introduce other approximation operators, remarkably the L2(Ω)- and
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H1(Ω)-orthogonal projection operators, which make sense on functions which need not to be

continuous.

Let H be a Hilber space and S a closed subspace of H.

Define the orthogonal projection operator PS in H over S such that

PS(v) ∈ S :
(
PS(v), ϕ

)
H

=
(
v, ϕ

)
H

∀ϕ ∈ S.

It is characterized by the property

‖v − PS(v)‖H = min
ϕ∈S

‖v − ϕ‖H .

Note that

P 2
S = PS and ‖PS(v)‖H ≤ ‖v‖H ∀ v ∈ H.

We are interested in the following projection operators

P k
h : L2(Ω) −→ Xk

h , P k
1,h : H1(Ω) −→ Xk

h ,

pk
h : L2(Ω) −→ Y k

h , Qk
h : H(div ; Ω) −→ W k

h ,

where

Y k
h := {vh ∈ L2(Ω) : vh|K ∈ Pk ∀K ∈ Th}, k ≥ 0.

Proposition 2.15. If Th is a regular family of triangulations, then

(a) ‖v − P k
h (v)‖ ≤ C h`+1 |v|`+1, 1 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω),

(b) ‖v − P k
1,h(v)‖1 ≤ C h` |v|`+1, 1 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω),

(c) ‖v −Qk
h(v)‖H(div ;Ω) ≤ C h`

(|v|` + |div v|`
)
,

1 ≤ ` ≤ k, ∀v ∈ H`(Ω)d, div v ∈ H`(Ω)d.

(d) ‖v − P k
1,h(v)‖1 ≤ C |v|1 and ‖v −Qk

h(v)‖H(div ;Ω) ≤ ‖v‖H(div ;Ω).

Under H2 regularity assumption, we have the following L2(Ω) error estimates.

(e) ‖v − P k
1,h(v)‖ ≤ C h`+1 |v|`+1, 0 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω),

(f) ‖v − P k
h (v)‖ ≤ C h |v|1, ∀ v ∈ H1(Ω),

(g) ‖v − P k
h (v)‖1 ≤ C ‖v − P k

1,h(v)‖1 ∀ v ∈ H1(Ω),

(h) ‖v − pk
h(v)‖ ≤ C h`+1 |v|`+1, 0 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω).

Proof. (a), (b), (c) are immediate consequences of the orthogonal projection property and

interpolation error estimate.

The second result of (d) is also an immediate consequences of the orthogonal projection

property.
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For the first result of (d), from the orthogonal projection property we have

‖v − P k
1,h(v)‖1 = min

φ∈Xk
h

‖v − φ‖1 ≤ ‖v‖1,

and then using the standard compactness argument yields the conclusion.

Now we will prove (e) using the duality argument.

(Duality Argument).

For a given r ∈ L2(Ω), by Riesz representation theorem there exists φ(r) ∈ H1(Ω)

such that

(φ(r), ψ)H1(Ω) = (r, ψ)L2(Ω) ∀ψ ∈ H1(Ω).

Assume that φ(r) ∈ H2(Ω), i.e., H2-regularity.

By closed graph theorem, there exists a constant C = C(Ω) such that

|φ(r)|2 ≤ C ‖r‖ ∀ r ∈ L2(Ω).

(L2(Ω) error estimate).

Set e = v − vh ∈ L2(Ω) with vh = P k
1,h(v).

‖e‖2 = (e, e) = (φ(e), e)H1(Ω) by duality argument

= (e, φ(e)− wh)H1(Ω) ∀wh ∈ Xk
h(Ω), by (e, wh) = 0

≤ ‖e‖1 ‖φ(e)− wh‖1 ∀wh ∈ Xk
h(Ω).

Since φ(e) ∈ H2(Ω) ⊂ C0(Ω̄) by Sobolev embedding theorem, we can take wh =

πk
h(φ(e)) so that

‖e‖2 ≤ ‖e‖1 ‖φ(e)− πk
h(φ(e))‖1

≤ C h ‖e‖1 |φ(e)|2 by interpolation error

≤ C h ‖e‖1 ‖e‖ by H2-regularity

Hence, by the last inequality and (b) of Proposition 2.15,

‖v − P k
1,h(v)‖ ≤ C h ‖v − P k

1,h(v)‖1 ≤ C h`+1 |v|`+1, 1 ≤ ` ≤ k.

Combining the last inequality with (d) yields (e).

Using (e) and the orthogonal projection property, we have

‖v − P k
h (v)‖ ≤ min

φ∈Xk
h

‖v − φ‖ ≤ ‖v − P k
1,h(v)‖ ≤ Ch |v|1, v ∈ H1(Ω)
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which completes (f).

Since P k
1,h(v) ∈ Xk

h ,

‖v − P k
h (v)‖1 ≤ ‖v − P k

1,h(v)‖1 + ‖P k
h (v)− P k

1,h(v)‖1

= ‖v − P k
1,h(v)‖1 + ‖P k

h [v − P k
1,h(v)]‖1.

Using the inverse inequality and the fact that

‖Q(v)‖H ≤ ‖v‖H , if Q is H-orthogonal projection

we have

‖P k
h [v − P k

1,h(v)]‖1 ≤
√

1 + Ch−2‖P k
h [v − P k

1,h(v)]‖ ≤
√

1 + Ch−2‖v − P k
1,h(v)‖

≤
√

1 + Ch−2 Ch ‖v − P k
1,h(v)‖1 ≤ C ‖v − P k

1,h(v)‖1.

This completes (g).

Let P k
K be the L2(K)-orthogonal projection onto Pk. Then, we have

pk
h(v)|K = P k

K(v|K) ∀ v ∈ L2(Ω).

Using the similar arguments of Theorem 2.11 we have the conclusion (h).

Definition (Quasi-uniform triangulation).

A family of triangulation Th (h > 0) is called quasi-uniform if it is regular and there exists

τ > 0 such that

min
K∈Th

hK ≥ τ h ∀h > 0.

This yields the so-called inverse-inequality : there exists a constant C such that

‖∇vh‖ ≤ C
1
h
‖vh‖ ∀ vh ∈ Xk

h(Ω).

Theorem 2.16 (Approximation Properties).

Let Th be a family of quasi-uniform triangulations. Then we have

(a) ‖v − P k
h (v)‖+ h ‖v − P k

h (v)‖1 ≤ C h`+1 |v|`+1, 0 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω),

(b) ‖v − P k
1,h(v)‖+ h ‖v − P k

1,h(v)‖1 ≤ C h`+1 |v|`+1, 0 ≤ ` ≤ k, ∀ v ∈ H`+1(Ω),

if we assume the H2 regularity assumption for ` = 0.
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3 Variational Formulation

3.1 Variational Formulation

Let Ω be a bounded domain of Rd, d = 2, 3 and let ∂Ω be its boundary. Consider a boundary

value problem of the form

(3.1)

{
Lu = f in Ω,

Bu = 0 on ∂Ω∗,

where f is a given function, u is the unknown, L is a linear differential operator and B is an

affine boundary operator. Also, ∂Ω∗ is a subset of ∂Ω possibly the whole boundary.

The problem (3.1) can generally be reformulated in a weak (or variational) form. This

approach allows the search of weak solutions, which don’t necessarily satisfy the equations (3.1)

in a pointwise manner.

Formally speaking, the weak formulation can be derived after multiplication of the differential

equation by a suitable set of test functions and performing an integration upon the domain.

As a result, we obtain a problem that reads

(3.2) find u ∈ W : A(u, v) = F(v) ∀ v ∈ V,

where W is the space of admissible solutions and V is the space of test functions. Both W and

V can be assumed to be a Hilbert spaces.

F is a linear functional on V that accounts for the right hand side f as well as for possible

non-homogeneous boundary terms.

A(·, ·) is a bilinear form corresponding to the differential operator L.

The boundary conditions on u can be enforced directly in the definition of W (essential

boundary conditions), or they can be achieved indirectly through a suitable choice of the bilinear

form A as well as the functional F (natural boundary conditions).

In most case, W = V . Denote by (·, ·) the L2(Ω) inner product.

Example (Poisson problem).

{
−∆u = f in Ω,

u = 0 on ∂Ω
=⇒





W = V = H1
0 (Ω)

A(u, v) = (∇u,∇v)

F(v) = (f, v)

Example (Stokes problem).



−ν∆u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω

=⇒





W = V = H1
0 (Ω)2 × L2

0(Ω)

A(u, v) = (ν∇u,∇v)− (p,div v) + (q, div u)

F(v) = (f ,v)

where u = (u, p), v = (v, q) ∈ V .
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3.2 Some results of functional analysis

In this section we present basic functional theorems about existence and uniqueness of the

solution of the variational problem.

Proposition 3.1 (Projection Theorem). Given a closed subspace M of H and v ∈ H, there

exists a unique decomposition

v = PMv + PM⊥v,

where PM : H → M and PM⊥ : H → M⊥ are orthogonal projections, respectively. In

other words,

H = M ⊕M⊥.

Theorem 3.2 (Riesz Representation Theorem).

Any continuous linear functional L on a Hilbert space H can be represented uniquely as

L(v) = (u, v)H , for some u ∈ H.

Furthermore, we have

‖L‖H′ = ‖u‖H .

Proof. Uniqueness is given by

0 = L(u1 − u2)− L(u1 − u2) = (u1, u1 − u2)H − (u2, u1 − u2)H

= (u1 − u2, u1 − u2)H = ‖u1 − u2‖2
H .

(Existence) Let M = {v ∈ H : L(v) = 0} = Ker(L). Then M is a subspace of H and

H = M ⊕M⊥.

Case (1): M⊥ = {0}.
In this case, M = H so that L ≡ 0. So take u = 0.

Case (2): M⊥ 6= {0}.
Pick z ∈ M⊥, z 6= 0. Then L(z) 6= 0. For v ∈ H and β = L(v)/L(z) we have

L(v − βz) = L(v)− βL(z) = 0 or v − βz ∈ M.

Thus, v−βz = PMv and βz = PM⊥v. In particular, if v ∈ M⊥, then v = βz which proves

that M⊥ is one-dimensional.

Choose

u :=
L(z)
‖z‖2

H

z.
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Note that u ∈ M⊥. We have

(u, v)H = (u, (v − βz) + βz)H = (u, v − βz)H + (u, βz)H

= (u, βz)H = β
L(z)
‖z‖2

H

(z, z)H = βL(z) = L(v).

Thus, this u is the desired element of H.

It remains to prove that ‖L‖H′ = ‖u‖H . Using the dual norm,

‖L‖H′ = sup
06=v∈H

L(v)
‖v‖H

= sup
0 6=v∈H

|(u, v)H |
‖v‖H

≤ ‖u‖H =
|L(z)|
‖z‖H

≤ ‖L‖H′ .

Therefore, ‖u‖H = ‖L‖H′ .

Remark. According to the Riesz Representation Theorem, there is a natural isometry between

H and H ′ (u ∈ H ←→ Lu ∈ H ′). For this reason, H and H ′ are often identified. for

example, [L2(Ω)]′ = L2(Ω).

Let us consider the case W = V in (3.2)

(3.3) find u ∈ V : A(u, v) = F(v) ∀ v ∈ V.

Theorem 3.3 (Lax-Milgram lemma).

Let V be a (real) Hilbert space, endowed with the norm ‖ · ‖V , A(·, ·) a bilinear form on

V × V and F(·) a linear continuous functional on V , i.e., F ∈ V ′.

Assume that A(·, ·) is continuous:

∃ γ > 0 s.t. |A(v, w)| ≤ γ ‖v‖V ‖w‖V ∀ v, w ∈ V,

and coercive:

∃α > 0 s.t. A(v, v) ≥ α ‖v‖2
V ∀ v ∈ V.

Then, there exists a unique solution u ∈ V solution to (3.3) and

‖u‖V ≤ 1
α
‖F‖V ′ .

Proof. For convenience, denote by ‖ · ‖ = ‖ · ‖V and (·, ·) the inner product in V .

By the Riesz representation theorem, we can write

F(v) = (RF , v) ∀ v ∈ V

and for each fixed w ∈ V

A(w, v) = (Aw, v) ∀ v ∈ V
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where the isometric operator R : V ′ → V and A : V → V are linear continuous operators

since

‖RF‖ = sup
06=v∈V

(RF , v)
‖v‖ = sup

0 6=v∈V

F(v)
‖v‖ = ‖F‖V ′

and

‖Aw‖ = sup
06=v∈V

(Aw, v)
‖v‖ = sup

06=v∈V

A(w, v)
‖v‖ ≤ γ ‖w‖.

Problem (3.3) is thus equivalent to the following one: for each F ∈ V ′, find a unique u ∈ V

such that

Au = RF .

It is enough to show that A is bijection.

(Injective) From the fact that

‖v‖2 ≤ 1
α

(Av, v) ≤ 1
α
‖Av‖ ‖v‖,

we have ‖v‖ ≤ 1
α‖Av‖. Thus, the uniqueness is proven.

(Surjective : the range R(A) of A = V ) It is enough to show that R(A) is closed and

R(A)⊥ = {0} because V = R(A)⊕R(A)⊥ if R(A) is a closed subspace.

Suppose that Avn → w in V . From the fact that

‖vn − vm‖ ≤ 1
α
‖Avn −Avm‖,

vn is a Cauchy sequence in the Hilbert space V . Set v = lim vn. Since A is continuous,

Av = w ∈ R(A) and hence R(A) is closed.

Let z ∈ R(A)⊥. Since

0 = (Az, z) = A(z, z) ≥ α‖z‖2,

we have that z = 0.

Finally, we have

‖u‖2 ≤ 1
α
A(u, u) =

1
α
F(u) ≤ 1

α
‖F‖V ′‖u‖

which completes the theorem.

Remark (Symmetric Case). If the bilinear form is symmetric, then A(·, ·) defines a scalar

product on V and hence the Riesz representation theorem suffices to infer existence and

uniqueness for the solution (3.3).

In this case, the solution can be regarded as the unique solution to the minimization

problem

find u ∈ V such that J(u) ≤ J(v) ∀ v ∈ V,
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where J(v) is a quadratic functional given by

J(v) :=
1
2
A(v, v)−F(v).

2

Remark (Complex Case). Let V be a complex Hilbert space, endowed with the norm ‖ · ‖V

and A(·, ·) a sesquilinear form on V × V :

A(w, c1v1 + c2v2) = c̄1A(w, v1) + c̄2A(w, v2), w, v1, v2 ∈ V, c1, c2 ∈ C

and F(·) a linear continuous functional on V .

Assume that A(·, ·) is continuous:

∃ γ > 0 s.t. |A(v, w)| ≤ γ ‖v‖V ‖w‖V ∀ v, w ∈ V,

and coercive:

∃α > 0 s.t. |A(v, v)| ≥ α ‖v‖2
V ∀ v ∈ V.

Then, there exists a unique solution u ∈ V solution to (3.3) and

‖u‖V ≤ 1
α
‖F‖V ′ .

2

Now, let us consider the general case

(3.4) find u ∈ W : A(u, v) = F(v) ∀ v ∈ V.

Theorem 3.4 (Extension of the Lax-Milgram Lemma).

Let W and V be two (real) Hilbert spaces, endowed with the norms ‖ · ‖W and ‖ · ‖V ,

respectively, and let A(·, ·) be a bilinear form on W × V and F(·) a linear continuous

functional on V . i.e., F ∈ V ′.

Assume that

∃ γ > 0 s.t. |A(w, v)| ≤ γ ‖w‖W ‖v‖V ∀w ∈ W, v ∈ V,

∃α > 0 s.t. sup
0 6=v∈V

A(w, v)
‖v‖V

≥ α ‖w‖W ∀w ∈ W,

sup
w∈W

A(w, v) > 0 ∀ 0 6= v ∈ V.

Then, there exists a unique solution u ∈ W solution to (3.4) and

‖u‖W ≤ 1
α
‖F‖V ′ .
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Proof. By the Riesz representation theorem, we can construct a linear continuous operator

A : W → V such that for each w ∈ V ,

A(w, v) = (Aw, v)V ∀ v ∈ V

and

‖Aw‖V ≤ sup
v∈V

A(w, v)
‖v‖V

≤ γ‖w‖W ∀w ∈ W.

With the isometric operator R : V ′ → V constructed in Lax-Milgram lemma, we can

reduce the problem to find a unique u ∈ W such that

Au = RF .

If Aw = 0, then A(w, v) = 0 for any v ∈ V so that w = 0 by the second hypothesis. Hence,

A is injective.

Moreover the range R(A) of A is closed. In fact, if Awn → v in V , we have

‖wn − wm‖W ≤ 1
α

sup
06=v∈V

(
A(wn − wm), v

)
V

‖v‖V
≤ 1

α
‖A(wn − wm)‖V ,

hence wn → w for some w ∈ W and Awn → Aw in V .

Also, if z ∈ R(A)⊥, i.e.,

(Aw, z)V = A(w, z) = 0 ∀w ∈ W,

it follows z = 0 by the third hypothesis, hence A is surjective. Finally, the stability is

easily given:

‖u‖W ≤ 1
α

sup
06=v∈V

A(u, v)
‖v‖V

≤ 1
α
‖Au‖W ≤ 1

α
‖RF‖W ≤ 1

α
‖F‖V ′ .

2

3.3 Galerkin Method

In this section we assume that W = V . We consider the following variational problem:

(3.5) find u ∈ V : A(u, v) = F(v) ∀ v ∈ V.

Let Th be a family of regular triangulations of Ω with the mesh size h and let {Vh} denote

a family of finite dimensional subspaces of V , for example, Vh = Xk
h .
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Assume that

(3.6) for all v ∈ V , inf
vh∈Vh

‖v − vh‖ → 0 as h → 0.

The Galerkin approximation to (3.5) reads:

(3.7) find uh ∈ Vh : A(uh, vh) = F(vh) ∀ vh ∈ Vh.

From the algebraic point of view, let {φj : j = 1, · · · , Nh} be a basis for Vh, so that we can set

uh(x) =
Nh∑

j=1

ξj φj(x).

Then, from (3.7) we deduce the following linear system of dimension Nh:

Aξ = F,

where ξ =
(
ξj

)
, F := F(φi), Aij = A(φj , φi) for i, j = 1, · · · , Nh.

The matrix A is called the stiffness matrix.

By subtracting the equation (3.7) from (3.5) we have the fundamental orthogonality

A(u− uh, vh) = 0 ∀ vh ∈ Vh.

Theorem 3.5 (Céa Lemma). Under the assumption of Lax-Milgram lemma, there exists a

unique solution uh to (3.7) such that

‖uh‖V ≤ 1
α
‖F‖V ′ .

If u is the solution to (3.5), then it follows

‖u− uh‖V ≤ γ

α
inf

vh∈Vh

‖u− vh‖V .

Proof. Since Vh is a subspace of V , applying the Lax-Milgram lemma yields the existence and

uniqueness of uh and the stability.

Using the fundamental orthogonality, we have that for any wh ∈ Vh

α‖u− uh‖2
V ≤ A(u− uh, u− uh) = A(u− uh, u− uh) +A(u− uh, uh + wh)

= A(u− uh, u− wh) ≤ γ‖u− uh‖V ‖u− wh‖V .

This completes the theorem.
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Remark (Ritz Galerkin Method). When A(·, ·) is symmetric, Galerkin method is referred to

as the Ritz Galerkin method, in this case existence and uniqueness follows from the Riesz

representation theorem. Also, uh turns out to be the orthogonal projection of u upon Vh

with respect to the the scalar product A(·, ·).

Remark (Stiffness Matrix A). The stiffness matrix A is positive definite, i.e.,

(Aη, η) =
Nh∑

i,j=1

ηiA(φj , φi)ηj = A(ηh, ηh) > 0, ∀0 6= η ∈ RNh

since (Aη, η) = A(ηh, ηh) where ηh(x) =
∑Nh

j=1 ηjφj(x) and η =
(
ηj

)
.

In particular, any eigenvalue of A has positive real part:

Let A(x1 + ix2) = (λ1 + iλ2)(x1 + ix2).

(Ax1,x1) = λ1(x1,x1)− λ2(x2,x1), (Ax2,x2) = λ1(x2,x2) + λ2(x1,x2)

by summing

(Ax1,x1) + (Ax2,x2) = λ1

[
(x1,x1) + (x2,x2)

]
.

Since (Ax1,x1)+(Ax2,x2) > 0 and (x1,x1)+(x2,x2) > 0, we are led to λ1 > 0.

When the bilinear form A is symmetric, it follows immediately that A is also symmetric

and any eigenvalue of A is positive real value.

Remark (Example). If V = H1(Ω) and Vh = Xk
h , then by Céa Lemma and approximation

property we have the following error estimate in H1(Ω)-norm:

‖u− uh‖1 ≤ γ

α
inf

vh∈Vh

‖u− vh‖1 ≤ γ C

α
h` |u|`+1

provided u ∈ H`+1(Ω), 0 ≤ ` ≤ k.

3.4 Petrov-Galerkin Method

In this section we consider the following variational problem:

(3.8) find uh ∈ Wh : Ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh

where Wh and Vh are two relative finite dimensional subspaces of W and V such that Wh 6= Vh

but dimWh = dimVh = Nh for all h > 0, and Ah and Fh are convenient approximations to A
and F , respectively. Spaces W and V need not be necessarily different.

Due to Babus̆ka and Aziz we have the following theorem.
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Theorem 3.6. Under the assumptions of Theorem 3.4, suppose further that Fh is a linear map

and that Ah is a bilinear form satisfying the same properties of A, (2) and (3) in Theorem

3.4, with the constant αh. Then, there exists a unique solution uh to (3.8) such that

‖uh‖W ≤ 1
αh

sup
06=vh∈Vh

Fh(vh)
‖vh‖V

.

Moreover, if u is the solution of (3.4), it follows

‖u− uh‖W ≤ inf
wh∈Wh

[(
1 +

γ

αh

)
‖u− wh‖W +

1
αh

sup
06=vh∈Vh

|A(wh, vh)−Ah(wh, vh)|
‖vh‖V

]

+
1
αh

sup
06=vh∈Vh

|F(vh)−Fh(vh)|
‖vh‖V

.

Proof. For any fixed h, existence, uniqueness and stability follow from the extension of Lax-

Milgram lemma.

For all wh ∈ Wh and vh ∈ Vh, we have

Ah(uh − wh, vh) = A(u− wh, vh) +A(wh, vh)−Ah(wh, vh) + Fh(vh)−F(vh)

so that

αh‖uh − wh‖W ≤ γ‖u− wh‖W + sup
06=vh∈Vh

[ |A(wh, vh)−Ah(wh, vh)|
‖vh‖V

+
|F(vh)−Fh(vh)|

‖vh‖V

]
.

Finally, using the triangle inequality

‖u− uh‖W ≤ ‖u− wh‖W + ‖uh − wh‖W

yields the theorem.

Examples of Petrov-Galerkin approximations are furnished by the so-called τ -method (the

trial functions do not individually satisfy the boundary conditions; thus, some equations are

needed to ensure that the global expansion satisfies the boundary conditions).

3.5 Generalized Galerkin Method

In this section we consider the following variational problem:

(3.9) find uh ∈ Vh : Ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh

where Vh is a family of finite dimensional subspaces of V , and Ah and Fh are convenient

approximations to A and F , respectively. This is a special subcase of Petrov-Galerkin Method

including the collocation method in its weak form. Fh(·) is a linear form defined on Vh and

Ah(·, ·) is a bilinear form defined over Vh × Vh, and they do not necessarily make sense when

applied to elements of V .
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Theorem 3.7 (The first Strang Lemma).

Under the assumptions of Theorem 3.3, suppose further that Fh is a linear map and that

Ah is a bilinear form which is uniformly coercive (independent of h) over Vh × Vh:

Ah(vh, vh) ≥ α∗‖vh‖2
V ∀ vh ∈ Vh.

Then, there exists a unique solution uh to (3.9) such that

‖uh‖V ≤ 1
α∗

sup
06=vh∈Vh

Fh(vh)
‖vh‖V

.

Moreover, if u is the solution of (3.5), it follows

‖u− uh‖V ≤ inf
wh∈Vh

[(
1 +

γ

α∗
)
‖u− wh‖V +

1
α∗

sup
06=vh∈Vh

|A(wh, vh)−Ah(wh, vh)|
‖vh‖V

]

+
1
α∗

sup
0 6=vh∈Vh

|F(vh)−Fh(vh)|
‖vh‖V

.

Proof. The existence, uniqueness and stability follow from the Lax-Milgram lemma.

Let wh ∈ Vh. Setting σh = uh − wh 6= 0, we obtain

α∗‖σh‖2
V ≤ Ah(σh, σh)

= A(u− wh, σh) +A(wh, σh)−Ah(wh, σh) + Fh(σh)−F(σh).

We have

α∗‖σh‖V ≤ γ‖u− wh‖V +
|A(wh, σh)−Ah(wh, σh)|

‖σh‖V
+
|Fh(σh)−F(σh)|

‖σh‖V

≤ γ‖u− wh‖V + sup
06=vh∈Vh

|A(wh, vh)−Ah(wh, vh)|
‖vh‖V

+ sup
0 6=vh∈Vh

|Fh(vh)−F(vh)|
‖vh‖V

.

The above inequality is true also when σh = 0. Using the triangle inequality

‖u− uh‖W ≤ ‖u− wh‖W + ‖uh − wh‖W

yields the theorem.

Proposition 3.8. Under the same assumptions of the previous theorem, suppose further that

the bilinear form Ah(·, ·) is defined at (u, vh), where u is the solution to (3.5) and vh ∈ Vh,

and satisfies for a suitable γ∗ > 0

|Ah(u− wh, vh)| ≤ γ∗‖u− wh‖V ‖vh‖V ∀wh, vh ∈ Vh,

uniformly with respect to h > 0. Then the following convergence estimates holds

‖u− uh‖V ≤
(

1 +
γ∗

α∗

)
inf

wh∈Vh

‖u− wh‖V +
1
α∗

sup
06=vh∈Vh

|Ah(u, vh)−Fh(vh)|
‖vh‖V

.
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Proof. For all wh ∈ Vh, we have

Ah(uh − wh, uh − wh) = Ah(u− wh, uh − wh) + Fh(uh − wh)−Ah(u, uh − wh)

so that

α∗‖uh − wh‖V ≤ γ∗‖u− wh‖V + sup
06=vh∈Vh

|Fh(vh)−Ah(u, vh)|
‖vh‖V

.

The triangle inequality yields the theorem.

Remark (Non-conforming approximation). When Vh * V , the bilinear form A is thus not

necessarily defined on Vh × Vh. Assume that a norm ‖ · ‖h and the approximate bilinear

form Ah are defined in (V + Vh), and that the approximate linear functional Fh is defined

on Vh. We require that there exist constants α∗ > 0 and γ∗ > 0 such that for each h > 0

Ah(vh, vh) ≥ α∗‖vh‖2
h ∀ vh ∈ Vh,

|Ah(w, vh)| ≤ γ∗‖w‖h‖vh‖h ∀w ∈ (V + vh), vh ∈ Vh.

Then by the so-called second Strang lemma we have

‖u− uh‖h ≤
(

1 +
γ∗

α∗

)
inf

wh∈Vh

‖u− wh‖h +
1
α∗

sup
0 6=vh∈Vh

|Ah(u, vh)−Fh(vh)|
‖vh‖h

.

The proof is quite similar to that of the previous proposition.

For example, consider P1 non-conforming triangular finite element method for Poisson

problem:

Ah(vh, wh) :=
∑

K∈Th

(∇vh,∇wh)K and ‖vh‖ := Ah(vh, vh)
1
2 .
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4 Galerkin Approximation of Elliptic Problems

4.1 Problem Formulation

Let Ω be a bounded domain in Rd with a Lipschitz continuous boundary ∂Ω.

Consider the second order linear operator L defined by

(4.1) Lu = −∇ ·A∇u + b · ∇u +∇ · (b̃u) + c u,

where a matrix function A = (aij), vector functions b and b̂, and a scalar function c are given

coefficients.

If the coefficients b and b̃ are regular enough, we can omit either b ·∇u or ∇· (b̃u) without

loosing generality.

Definition (Elliptic oprator). The differential operator L is said to be elliptic in Ω if there

exists a constant α0 > 0 such that

α0 |ξ|2 ≤ ξT A ξ for each ξ ∈ Rd and a.e. x ∈ Ω.

The bilinear form associating to L is

a(u, v) = (A∇u,∇v) + (b · ∇u, v)− (b̃u,∇v) + (cu, v).

Assume that the coefficients hold

aij , bi, b̃i, c ∈ L∞(Ω).

Let V be a closed subspace of H1(Ω) satisfying

H1
0 (Ω) ⊂ V ⊂ H1(Ω).

The variational problem we are interested is as follows: For a given F ∈ V ′,

(4.2) find u ∈ V : A(u, v) = F(v) ∀ v ∈ V,

where the bilinear form A(·, ·) coincides with a(·, ·) up to the sum of possible boundary terms.
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With the equation

Lu = f in Ω

(Examples of Boundary Conditions).

a. The Dirichlet Problem

u = 0 on ∂Ω.

=⇒ A(u, v) = a(u, v), F(v) = (f, v), V = H1
0 (Ω).

b. The Neumann Problem
∂u

∂nL
= g on ∂Ω

where the conormal derivative of u is given by

∂u

∂nL
:= n ·A∇u− (b̃ · n)u

If A = I and b̃ = 0, then
∂u

∂nL
=

∂u

∂n
= n · ∇u.

=⇒ A(u, v) = a(u, v), F(v) = (f, v) + (g, v)∂Ω, V = H1(Ω).

c. The Mixed Problem
u = 0 on ΓD,

∂u

∂nL
= g on ΓN .

=⇒ A(u, v) = a(u, v), F(v) = (f, v) + (g, v)ΓN
, V = H1

ΓD
(Ω).

d. The Robin Problem
∂u

∂nL
+ κu = g on ∂Ω

where κ is a given function.

=⇒ A(u, v) = a(u, v) + (κu, v)∂Ω, F(v) = (f, v) + (g, v)∂Ω, V = H1(Ω).
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4.2 Existence and Uniqueness

The basic ingredient for proving the existence of a solution is the Lax-Milgram lemma.

For any f ∈ L2(Ω), v → (f, v) on H1
0 (Ω) is a continuous linear functional.

The continuity of bilinear form a(·, ·) can be easily verified by using the L∞(Ω) coefficients.

Hence, we need only to check the coercivity of a(·, ·) under suitable assumptions on the data.

The ellipticity assumption yields

α0‖∇v‖2 = α0(∇v,∇v) ≤ (A∇v,∇v) ∀ v ∈ H1(Ω).

For a convenience, denote the remaining term in a(v, v) by

R := (b · ∇v, v)− (b̃ v,∇v) + (cv, v).

Note that

(b · ∇v, v) =
1
2

(
b,∇(v2)

)
and − (b̃ v,∇v) = −1

2

(
b̃,∇(v2)

)
.

Hence, we have

R :=
1
2

(
b− b̃,∇(v2)

)
+ (cv, v) =

(
−1

2
div (b− b̃) + c, v2

)
+

1
2

(
n · (b− b̃), v2

)
∂Ω

.

Let CΩ be the Poincaré constant satisfying

‖v‖2 ≤ CΩ‖∇v‖2 ∀ v ∈ H1
0 (Ω).

Assume that div (b̃− b) ∈ L∞(Ω).

a. Dirichlet Problem :

If there exists a constant η such that

−η ≤ −1
2

div (b− b̃) + c, a.e. x ∈ Ω with −∞ < η <
α0

CΩ
,

then a(·, ·) is coercive since α0 − ηCΩ > 0 and

a(v, v) = (A∇v,∇v) + R ≥ α0‖∇v‖2 − η‖v‖2 ≥
{

(α0 − ηCΩ)‖∇v‖2 if η ≥ 0,

α0‖∇v‖2 if η < 0,

≥
{

α0−ηCΩ
1+CΩ

‖v‖2
1 if η ≥ 0,

α0
1+CΩ

‖v‖2
1 if η < 0.

b. Neumann Problem :

If there exists a constant µ0 > 0 such that

(4.3) 0 < µ0 ≤ −1
2

div (b− b̃) + c a.e. x ∈ Ω and n · (b− b̃) ≥ 0 a.e. x ∈ ∂Ω,
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then

R =
(
−1

2
div (b− b̃) + c, v2

)
+

1
2

(
n · (b− b̃), v2

)
∂Ω
≥ µ0‖v‖2

so that a(·, ·) is coercive:

a(v, v) ≥ α0‖∇v‖2 + µ0‖v‖2 ≥ min{α0, µ0} ‖v‖2
1.

The second condition of (4.3) can be easily replaced by

‖b− b̃‖L∞(∂Ω) ≤ ε0, 0 ≤ ε0 <
2min{α0, µ0}

C∗

where C∗ is the constant of trace inequality:
∫

∂Ω
v2 ≤ C∗

∫

Ω
(v2 + |∇v|2) ∀ v ∈ H1(Ω).

If g ∈ L2(∂Ω), v → (g, v)∂Ω is a continuous linear form and hence F(v) = (f, v) + (g, v)∂Ω is

also a continuous linear form.

When the coefficients b, b̃ and c are all zeros, and
∫

Ω
fdx +

∫

∂Ω
gds = 0,

taking the space V = H1(Ω)∩L2
0(Ω) guarantees the Poincaré inequality and we can easily show

the coerciveness of a(·, ·).
c. Mixed Problem :

The Poincaré inequality is still valid in H1
ΓD

(Ω).

Thus, if there exists a constant η such that

−η ≤ −1
2

div (b− b̃) + c, a.e. x ∈ Ω with −∞ < η <
α0

CΩ
,

and either

n · (b− b̃) ≥ 0 a.e. x ∈ ΓN

or

‖b− b̃‖L∞(ΓN ) ≤ ε0, 0 ≤ ε0 <
2min{α0, µ0}

C∗ ,

then a(·, ·) is clearly coercive.

If g ∈ L2(ΓN ), v → (g, v)ΓN
is a continuous linear form and hence F(v) = (f, v) + (g, v)ΓN

is also a continuous linear form.

d. Robin Problem :

If there exists a constant µ0 > 0 such that

0 < µ0 ≤ −1
2

div (b− b̃) + c a.e. x ∈ Ω
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and either

κ +
1
2

n · (b− b̃) ≥ 0 a.e. x ∈ ∂Ω

or

‖κ +
1
2
(b− b̃) · n‖L∞(∂Ω) is small enough,

then A(u, v) = a(u, v) + (κu, v)∂Ω is coercive:

A(u, v) = (A∇v,∇v) +
(
−1

2
div (b− b̃) + c, v2

)
+

1
2

(
κ + n · (b− b̃), v2

)
∂Ω

≥ α0‖∇v‖2 + µ0‖v‖2 ≥ min{α0, µ0} ‖v‖2
1.

Also, if κ ∈ L∞(∂Ω), then A(u, v) = a(u, v) + (κu, v)∂Ω is continuous. Finally, if g ∈ L2(∂Ω),

v → (g, v)∂Ω is a continuous linear form and hence F(v) = (f, v) + (g, v)∂Ω is also a continuous

linear form.

(A priori estimate).

The coerciveness of A and continuity of F yields

α‖u‖2
1 ≤ A(u, u) = F(u) ≤ ‖F‖V ′‖u‖1

and then

α‖u‖1 ≤ ‖F‖V ′ ≤




C ‖f‖−1 for Dirichlet problem,

C (‖f‖+ ‖g‖− 1
2
,∂Ω) for Neumann problem.

4.3 Non-homogeneous Dirichlet Problem

Consider the following non-homogeneous Dirichlet problem:

(D)

{
Lu = f in Ω,

u = ϕ on ∂Ω.

Let ϕ̃ be the extension of ϕ in the whole Ω such that

‖ϕ̃‖1 ≤ C‖ϕ‖ 1
2
,∂Ω if ϕ ∈ H

1
2 (∂Ω).

By the change of variable ũ = u− ϕ̃, the problem (D) is equivalent to

(D∗)

{
Lũ = f − Lϕ̃ in Ω,

ũ = 0 on ∂Ω.

The variational problem is to

find ũ ∈ H1
0 (Ω) : a(ũ, v) = (f, v)− a(ϕ̃, v) ∀ v ∈ H1

0 (Ω).
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Since

|a(ϕ̃, v)| ≤ C‖ϕ̃‖1 ‖v‖1 ≤ C‖ϕ‖ 1
2
,∂Ω‖v‖1 ∀ v ∈ H1(Ω),

F(v) := (f, v) − a(ϕ̃, v) is a continuous linear form on H1
0 (Ω). Thus, the a priori estimate is

given by

‖u‖1 ≤ ‖ũ‖1 + ‖ϕ̃‖1 ≤ C(‖f‖−1 + ‖ϕ‖ 1
2
,∂Ω).

4.4 Regularity of Solutions

Assuming additional regularity on the data it is possible to prove that the weak solution is

indeed more regular, i.e., it belongs to Hs(Ω) for some s > 1 (see Grisvard(1985)).

It is worthwhile mentioning that the smoothness degree of the solution of a boundary value

problem does affect the order of convergence of a numerical approximation.

(Regularity of Solution).

Assume that for some k ≥ 0, ∂Ω is a Ck+2 manifold and the coefficients hold

aij , b̃i ∈ Ck+1(Ω̄), bi, c ∈ Ck(Ω̄) and f ∈ Hk(Ω).

Assume further that

i) ϕ ∈ Hk+ 3
2 (∂Ω) for the non-homogeneous Dirichlet problem (D),

ii) g ∈ Hk+ 1
2 (∂Ω) for the Neumann problem,

iii) κ ∈ Ck+1(∂Ω) for the Robin problem.

Then the respective solution u belongs to Hk+2(Ω).

In particular, if all data are C∞, then u is C∞.

(Polygonal Domain).

On the plane convex polygonal domain, the homogeneous Dirichlet problem for the Laplace

operator:

−∆u = f in Ω, u = 0 on ∂Ω

has the solution u ∈ H2(Ω) if f ∈ L2(Ω), the homogeneous Neumann problem for the

Laplace operator:

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω

has the solution u ∈ H2(Ω) if f ∈ L2(Ω) and the compatibility condition
∫
Ω f = 0 holds.

If Ω is not convex, and ω > π is the angle of a concave corner of ∂Ω, then it turns out that

(u − s) is an H2 function locally near that corner, but u ∈ H
3
2 (Ω), where s is a suitable

singular function.
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On the contrary, the solution of the mixed problem in general is not regular. There exist

examples in which the data and the boundary are smooth, while the solution belongs to

Hs(Ω) for any s < 3
2 , but not to H

3
2 (Ω).

(Example having corner singularity).

Let Ω be an open, bounded polygonal domain in R2 with one re-entrant angle. Extension

to the domain with the finite number of re-entrant angles is straightforward.

Let ω be the internal angle of Ω satisfying π < ω < 2π. Without the loss of generality,

assume that the corresponding vertex is at the origin. Define the singular function s and

the dual singular function by

s = r
π
ω sin

πθ

ω
and s− = r−

π
ω sin

πθ

ω

in the polar coordinate (r, θ) which is chosen at the origin so that the internal angle ω is

spanned by the two half-lines θ = 0 and θ = ω. Consider a family of cut-off functions of

r, ηρ(r), defined as follows:

ηρ(r) =





1, 0 < r ≤ ρR
2 ,

15
16

{
8
15
−

(
4r

ρR
− 3

)
+

2
3

(
4r

ρR
− 3

)3

− 1
5

(
4r

ρR
− 3

)5
}

,
ρR

2
< r ≤ ρR,

0, r > ρR

where ρ is a parameter in (0, 2] and R ∈ R is a fixed number. It is well known that the

solution has the representation of the type

u = w + ληρs,

where w ∈ H2(Ω) ∩H1
0 (Ω) is the regular part of the solution satisfying

−∆w − λ∆(ηρs) = f, in Ω

and λ ∈ R is the so-called stress intensity factor. Moreover, the following regularity

estimate holds:

‖w‖2 + |λ| ≤ CR‖f‖

where CR is a positive constant depending on the domain and the diameter of the support

of ηρ. Especially, CR increases if the diameter of ηρ is chosen smaller.



4.5 Galerkin Method : Finite Element Approximation 47

4.5 Galerkin Method : Finite Element Approximation

Consider the following Galerkin approximation:

(4.4) find uh ∈ Vh : A(uh, vh) = F(vh) ∀ vh ∈ Vh

where Vh is a suitable finite dimensional subspace of V .

Here, the bilinear form A(·, ·) is continuous and coercive, and the linear functional F(·) is

continuous.

The main point toward probing the convergence of uh to u is to verify that

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀ v ∈ V.

Proposition 4.1. Assume there exists a subset V dense in V such that

(4.5) inf
vh∈Vh

‖v − vh‖V −→ 0 as h −→ 0 ∀ v ∈ V.

Then, the Galerkin method is convergent, i.e., the solution uh of (4.4) converges in V to

the solution u of (4.2) with respect to the norm ‖ · ‖V .

Proof. Since V is dense in V , for each ε > 0 we can find v ∈ V such that

‖u− v‖V < ε.

Due to (4.5) there exist h0(ε) > 0 and, for any positive h < h0(ε), vh ∈ Vh such that

‖v − vh‖ < ε.

Hence, using the error estimate we have

‖u− uh‖V ≤ γ

α
‖u− vh‖V ≤ γ

α
(‖u− v‖+ ‖v − vh‖V )

which completes the theorem.

Assume that Ω ⊂ Rd, d = 2, 3 is a polygonal domain with Lipschitz boundary and Th is a

regular family of triangulations of Ω.

The finite dimensional subspace Vh is one of the followings:

i) Vh = Xk
h ∩H1

0 (Ω) (k ≥ 1) for the Dirichlet problem

ii) Vh = Xk
h (k ≥ 1) for the Neumann problem

iii) Vh = Xk
h ∩H1

ΓD
(Ω) (k ≥ 1) for the Mixed problem

iv) Vh = Xk
h (k ≥ 1) for the Robin problem.
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Theorem 4.2 (H1 error estimate).

If the exact solution u ∈ Hs(Ω) for some s ≥ 2, the following error estimate holds

(4.6) ‖u− uh‖1 ≤ C h` ‖u‖`+1 where ` = min(k, s− 1).

Proof. Since C∞(Ω̄) is dense in H1(Ω), we can choose V = C∞(Ω̄) for both Neumann and

Robin problem, V = C∞(Ω̄)∩H1
0 (Ω) for the Dirichlet problem and V = C∞(Ω̄)∩H1

GD
(Ω)

for the mixed problem. Furthermore, for each v ∈ V

inf
vh∈Vh

‖v − vh‖1 ≤ ‖v − πk
h(v)‖1 ≤ Ch`|v|`+1,

hence it converges to zero.

Since u ∈ Hs(Ω), s ≥ 2, u ∈ C0(Ω̄) and hence πk
h(u) ∈ Vh holds the respective boundary

conditions. Then, using the interpolation error

‖u− πk
h(u)‖1 ≤ Ch` ‖u‖`+1

and the Céa lemma

‖u− uh‖1 ≤ γ

α
inf

vh∈Vh

‖u− vh‖1,

we have the conclusion.

The convergence result (4.6) is optimal in the H1(Ω)-norm, i.e., it provides the highest

possible rate of convergence in the H1(Ω)-norm allowed by the polynomial degree k.

(Adjoint Problem). Consider the following adjoint problem: given r ∈ L2(Ω),

(4.7) find φ(r) ∈ V : A(v, φ(r)) = (r, v) ∀ v ∈ V.

The solution to (4.7) enjoys the same regularity property than the one of the original

problem (4.2).

In particular, if Ω is a polygonal domain the solution φ(r) belongs to H2(Ω) and holds

(4.8) ‖φ(r)‖2 ≤ C‖r‖0 ∀ r ∈ L2(Ω),

provided that Ω is convex, aij ∈ C1(Ω̄), and κ ∈ C1(∂Ω) (see Grisvard).

This is true for all but the mixed boundary value problem: the solution of the mixed

problem belongs to H2(Ω) for any s < 3/2 but in general not to H3/2(Ω), even for smooth

data.
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Theorem 4.3 (L2-error estimate). Assume that it holds (4.8).

If the exact solution u ∈ Hs(Ω) for some s ≥ 2, then the following estimate holds

(4.9) ‖u− uh‖ ≤ C h`+1 ‖u‖`+1 where ` = min(k, s− 1).

Proof. Let r = u− uh. For any wh ∈ Vh we have

‖u− uh‖2 = (r, u− uh) = A(u− uh, φ(r)) = A(u− uh, φ(r)− wh)

≤ γ‖u− uh‖1 ‖φ(r)− wh‖1.

Taking wh = πk
h(φ(r)), we have from the interpolation error and (4.8) that

‖u− uh‖2 ≤ γ‖u− uh‖1 ‖φ(r)− πk
h(φ(r))‖1

≤ Cγ‖u− uh‖1 h ‖φ(r)‖2 ≤ C h ‖u− uh‖1 ‖r‖
= C h ‖u− uh‖1 ‖u− uh‖.

Thus, we have the conclusion.

(L∞-error estimate). We have the following error estimate in L∞(Ω):

‖u− uh‖∞ ≤ C h`+1− d
2 |u|`+1 ∀u ∈ H`+1(Ω).

(The non-homogeneous Dirichlet problem).

The variational problem is to

find ũ ∈ H1
0 (Ω) : a(ũ, v) = (f, v)− a(ϕ̃, v) ∀ v ∈ H1

0 (Ω).

Let Vh = Xk
h ∩H1

0 (Ω). Then, the finite element approximation is to

(4.10) find ũh ∈ Vh : a(ũh, vh) = (f, vh)− a(ϕ̃, vh) ∀ vh ∈ Vh.

Here, the construction of the extension operator ϕ → ϕ̃ is not easily performed.

Assuming that ϕ ∈ H1/2(∂Ω) ∩ C0(∂Ω), we can get an alternative approach.

Denote by {xs : s = 1, · · · ,Mh} the nodes on ∂Ω and {ai : i = 1, · · · , Nh} the internal

nodes. Set

V ∗
h := {vh ∈ Xk

h : vh(xs) = ϕ(xs) s = 1, · · · ,Mh}.

The approximate problem reads:

(4.11) find uh ∈ V ∗
h : a(uh, vh) = (f, vh) ∀ vh ∈ Vh.



50 4 GALERKIN APPROXIMATION OF ELLIPTIC PROBLEMS

Any uh ∈ V ∗
h can be written by

uh =
Nh∑

i=1

uh(ai)ϕi +
Mh∑

s=1

ϕ(xs)ϕ̃s := zh + ϕ̃h,

where ϕi and ϕ̃i are the basis functions of Xk
h relative to the internal and boundary nodes,

respectively.

Then we have the new discrete problem for non-homogeneous Dirichlet problem:

find zh ∈ Vh : a(zh, vh) = (f, vh)− a(ϕ̃h, vh) ∀ vh ∈ Vh.

Using the orthogonality

a(u− uh, vh) = 0 ∀ vh ∈ Vh

and the Céa lemma, we have the error estimate that if u ∈ Hs(Ω) s ≥ 2,

‖u− uh‖1 = O( h` ), ` = min(k, s− 1).

4.6 Non-coercive Variational Problem

Consider the following elliptic problem:

(4.12) Lu = −∇ ·A∇u + b · ∇u + c u.

Define

a(u, v) = (A∇u,∇v) + (b · ∇u, v) + (cu, v).

When the bilinear form a(·, ·) is not coercive, we need the following theorem.

Theorem 4.4 (Gȧrding Inequality).

Suppose that the coefficient matrix A is uniformly bounded, i.e.,

α |ξ|2 ≤ ξT A ξ ∀ ξ ∈ Rd, a.e. x ∈ Ω,

and the coefficient b ∈ L∞(Ω)d. Then there is a constant K < ∞ such that

(4.13)
α

2
‖v‖2

1 ≤ a(v, v) + K‖v‖2 ∀ v ∈ H1(Ω).

Proof. By Hölder inequality

|(b · ∇v, v)| =
∣∣∣∣∣
∫

Ω

d∑

k=1

bk(x)∂xk
v(x) v(x) dx

∣∣∣∣∣

≤
∫

Ω

d∑

k=1

|bk(x)| |∂xk
v(x)| |v(x)| dx ≤

d∑

k=1

‖bk‖∞
∫

Ω
|∂xk

v(x)| |v(x)| dx

≤
d∑

k=1

‖bk‖∞ ‖∂xk
v‖ ‖v‖ ≤ B |v|1 ‖v‖,
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where

B2 :=
d∑

k=1

‖bk‖2
∞.

Now we have

a(v, v) + K‖v‖2 ≥ α|v|21 + (b · ∇v, v) + (c + K, v2)

≥ α|v|21 −B |v|1 ‖v‖+ (β + K)‖v‖2,

where

β := ess inf{c(x) : x ∈ Ω}.
From the arithmetic-geometric mean inequality, we have

a(v, v) + K‖v‖2 ≥ α

2
(|v|21 + ‖v‖2

1

)
,

provided

K ≥ α

2
+

B2

2α
− β.

Note that K need not be positive, if β > 0.

Assume that

(a) a(·, ·) is continuous on H1(Ω):

|a(u, v)| ≤ C1‖u‖1 ‖v‖1 ∀u, v ∈ H1(Ω)

(b) there exists a constant K ∈ R satisfying the Gȧrding inequality

a(v, v) + K‖v‖2 ≥ α ‖v‖2
1 ∀ v ∈ H1(Ω)

(c) there is some V ⊂ H1(Ω) such that there is a unique solution u,

to the variational problem

a(u, v) = (f, v) ∀ v ∈ V

as well as to the adjoint variational problem

a(v, u) = (f, v) ∀ v ∈ V

(d) in both cases, the regularity estimate holds: for all f ∈ L2(Ω)

|u|2 ≤ CR ‖f‖2.

Let Vh be a finite element subspace of V which satisfies

(e) inf
v∈Vh

‖u− v‖1 ≤ CA h |u|2 ∀u ∈ H2(Ω).

Consider the following variational problem:

(4.14) find uh ∈ Vh : a(uh, v) = (f, v) ∀ v ∈ Vh.
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Theorem 4.5. Under the conditions (a), (b), (c), (d) and (e), there are constants h0 > 0 and

C > 0 such that for all h ≤ h0, there is a unique solution to (4.14) satisfying

(4.15) ‖u− uh‖1 ≤ C inf
v∈Vh

‖u− v‖1 ≤ C h |u|2,

and

(4.16) ‖u− uh‖ ≤ C h ‖u− uh‖1 ≤ C h2 |u|2.

In particular, we may take

h0 =
( α

2K

) 1
2 1

C1CACR
.

Proof. We begin by deriving an estimate for any solution to (4.14) that may exists.

Using (a), (b) and the orthogonality

a(u− uh, v) = 0 ∀ v ∈ Vh,

we have that for any v ∈ Vh,

α‖u− uh‖2
1 ≤ a(u− uh, u− uh) + K(u− uh, u− uh)

= a(u− uh, u− v) + K‖u− uh‖2
2

≤ C1‖u− uh‖1 ‖u− v‖1 + K‖u− uh‖2.

We apply standard duality techniques to bound ‖u − uh‖. Let w be the solution to the

adjoint problem satisfying (d):

a(v, w) = (u− uh, v) ∀ v ∈ V.

Then, for any wh ∈ Vh,

(u− uh, u− uh) = a(u− uh, w) = a(u− uh, w − wh)

≤ C1‖u− uh‖1 ‖w − wh‖1.

Using (d) and (e) yields

(u− uh, u− uh) ≤ C1CA h ‖u− uh‖1 |w|2 ≤ C1CACR h ‖u− uh‖1 ‖u− uh‖2.

Therefore

‖u− uh‖ ≤ C1CACR h ‖u− uh‖1.

Now, we have

α‖u− uh‖2
1 ≤ C1‖u− uh‖1 ‖u− v‖1 + K(C1CACR)2 h2 ‖u− uh‖2

1.
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Thus, for h ≤ h0 where

h0 =
( α

2K

) 1
2 1

C1CACR
,

we obtain

(4.17) α‖u− uh‖2
1 ≤ 2C1 ‖u− v‖1 ∀ v ∈ Vh.

This yields (4.15) and (4.16) follows (4.15).

So far, we have been operating under the assumption of the existence of a solution uh. Since

(4.14) is a finite dimensional system having the same number of unknowns as equations,

uniqueness implies existence.

Set f ≡ 0. Then, u ≡ 0 from (d). Also, (4.17) implies that uh ≡ 0 as well, provided h is

sufficiently small. Hence, the problem (4.14) has unique solution for h sufficiently small,

since f ≡ 0 implies uh ≡ 0.

4.7 Generalized Galerkin Method

Consider the generalized Galerkin method

(4.18) find uh ∈ Vh : Ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh

associating to the homogeneous Dirichlet problem:

Lu = −∇ ·A∇u = f in Ω.

Let V = H1
0 (Ω) and Vh = Xk

h ∩H1
0 (Ω), k = 1, 2, 3.

Consider the numerical integration:

∫

Ω
ϕdx '

∑

K∈Th

M∑

j=1

∫

K
wj,K ϕ(bj,k) dx =: Qh(ϕ),

where the weights wj,K and the nodes bj,K are derived from a quadrature formula defined on

the reference element K̂. More precisely, these weights and nodes are defined as

wj,K = | detBK |ŵj , bj,K = TK(b̂j),

where ŵj and b̂j are the weights and nodes of the quadrature formula chosen on K̂, and TK(x̂) =

BK x̂ + bK is the affine map from K̂ onto K.

Note that, with ϕ(x) = ϕ̂(x̂) for all x = TK(x̂), x̂ ∈ K̂,
∫

K
ϕ(x) dx = |det(BK)|

∫

K̂
ϕ̂(x̂) dx̂.
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Define

Fh(vh) = Qh(fvh), Ah(uh, vh) = Qh(A∇uh · ∇vh).

Due to the presence of pointvalues, both Ah and Fh should now be defined on Vh and not on

V . We need to assume that the coefficients of both the operator L and the right hand side f

are continuous functions on Ω̄.

Let K̂ be an d-simplex. Denote by

b̂i : the vertices for i = 1, ·, d + 1,

b̂ij : the midpoints of each side for i, j = 1, · · · , d + 1,

b̂0 : the center of gravity of K̂, i.e., b̂0 := 1
n+1

∑d+1
j=1 b̂j .

The following numerical quadrature formulae are exact on Pk:∫

K̂
ϕ̂ dx ' meas(K̂) ϕ̂(b̂0), k = 1

∫

K̂
ϕ̂ dx ' 1

3
meas(K̂)

∑

1≤i<j≤3

ϕ̂(b̂ij), k = 2, d = 2,

∫

K̂
ϕ̂ dx ' 1

60
meas(K̂)


3

3∑

i=1

ϕ̂(b̂i) + 8
∑

1≤i<j≤3

ϕ̂(b̂ij) + 27ϕ(b̂0)


 , k = 3 d = 2.

To check these, let λ̂i(x), 1 ≤ i ≤ d + 1, denote the barycentric coordinates of a point x with

respect to the vertices of the n-simplex K̂.

Then, for any integers αi ≥ 0 (1 ≤ i ≤ d + 1), one has (show exercise 4.1.1 in Ciarlet)

(4.19)
∫

K̂
λ̂1(x̂)α1 · · · λ̂d+1(x̂)αd+1 dx̂ =

α1! · · ·αd+1! d !
(α1 + · · ·+ αd+1 + d)!

meas(K̂).

To show the first formula, let

ϕ̂ =
d+1∑

j=1

ϕ̂(b̂j)λ̂j

be any polynomial of degree ≤ 1. Then, we have
∫

K̂
ϕ̂(x̂) dx̂ =

meas(K̂)
d + 1

d+1∑

j=1

ϕ̂(b̂j) = meas(K̂) ϕ(b̂0).

The uniform coerciveness of Ah using the above three quadrature formulae is given in Ćıarlet,

pp. 193–196. Under the assumption that Ah is uniformly coercive in Vh×Vh, the error estimate

is given in Theorem 3.7.

To check the consistency errors define the quadrature error

EK(ϕ) :=
∫

K
ϕ dx−

L∑

j=1

wj,K ϕ(bj,K).

The following theorem is given in Theorem 4.1.4 and 4.1.5 of Ciarlet:
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Proposition 4.6. Assume that the quadrature formula on K̂ is exact on P2k−2. Then there

exists a constant C, independent of h, such that for all K ∈ Th

|EK(aDipDjq)| ≤ C hk
K ‖a‖W k,∞(K) ‖p‖k,K |q|1,K

for any a ∈ W k,∞(K), p, q ∈ Pk, i, j = 1, · · · , d, and

|EK(fp)| ≤ C hk
K [meas(K)]

1
2 ‖f‖W k,∞(K) ‖p‖1,K

for any f ∈ W k,∞(K), p ∈ Pk.

Theorem 4.7. Let Th be a regular family of triangulations.

Assume that the quadrature formula on K̂ is exact on P2k−2 and that its weights ŵj are

positive. If the solution u ∈ Hk+1(Ω), the coefficients aij ∈ W k,∞(Ω) and the datum

f ∈ W k,∞(Ω), then there exists a constant C independent of h such that

‖u− uh‖1 ≤ C hk


|u|k+1 + ‖u‖k+1

d∑

i,j=1

‖aij‖W k,∞(Ω) + ‖f‖W k,∞(Ω)


 .

Proof. Recall the first Strang Lemma:

‖u− uh‖V ≤ inf
wh∈Vh

[(
1 +

γ

α∗
)
‖u− wh‖V +

1
α∗

sup
06=vh∈Vh

|A(wh, vh)−Ah(wh, vh)|
‖vh‖V

]

+
1
α∗

sup
0 6=vh∈Vh

|F(vh)−Fh(vh)|
‖vh‖V

.

Note that the approximation error:

inf
wh∈Vh

‖u− uh‖1 ≤ Chk|u|k+1.

Using the previous proposition, we have

|A(πk
h(u), vh)−Ah(πk

h(u), vh)| ≤
∑

K∈Th

d∑

i,j=1

∣∣∣EK

(
aijDjπ

k
h(u)Divh

)∣∣∣

≤ C
∑

K∈Th

d∑

i,j=1

(
hk

K‖aij‖W k,∞(K)‖πk
h(u)‖k,K |vh|1,K

)

≤ Chk




d∑

i,j=1

‖aij‖W k,∞(Ω)





 ∑

K∈Th

‖πk
h(u)‖k,K |vh|1,K




≤ Chk




d∑

i,j=1

‖aij‖W k,∞(Ω)





 ∑

K∈Th

‖πk
h(u)‖2

k,K




1
2

|vh|1,Ω.
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In addition, writing πk
h(u) as πk

h(u)− u + u, we obtain
∑

K∈Th

‖πk
h(u)‖2

k,K ≤ 2
∑

k∈Th

(
‖u‖2

k,K + ‖u− πk
h(u)‖2

k,K

)

≤ 2


‖u‖2

k,Ω +
∑

k∈Th

‖u− πk
h(u)‖2

k,K




≤ C
(‖u‖2

k + h2 |u|2k+1,Ω

) ≤ C‖u‖2
k+1.

Also we have

|F(vh)−Fh(vh)| ≤
∑

k∈Th

|EK(fvh)| ≤ C hk [meas(Ω)]
1
2 ‖f‖W k,∞(Ω) ‖vh‖1.

Thus, by the first Strang Lemma 3.7 we obtain the conclusion.

(Example on P1 finite element space, i.e., k = 1).

Let Th be a regular family of triangulations.

The three points quadrature formula on K̂ is exact on P2. If the solution u ∈ H2(Ω), the

coefficients aij ∈ W 1,∞(Ω) and the datum f ∈ W 1,∞(Ω), then there exists a constant C

independent of h such that

‖u− uh‖1 ≤ C h


|u|2 + ‖u‖2

d∑

i,j=1

‖aij‖W 1,∞(Ω) + ‖f‖W 1,∞(Ω)


 .

4.8 Condition number of Stiffness matrix and Inverse inequality

Let Afe be the stiffness matrix given by

Afe : Afe(i, j) = A(ϕj , ϕi)

where ϕj are basis functions of Vh ⊂ Xk
h .

Recall that the condition number χ(B) of a non-singular matrix B is given by

χ(B) := ‖B‖ ‖B−1‖,

where ‖ · ‖ is a suitable matrix-norm.

When B is symmetric, we have ‖B‖2 = ρ(B) where ρ(B) denotes the spectral radius of B.

In addition, if B is positive definite, then

χ2(B) = χsp(B) :=
λmax(B)
λmin(B)

.

In this subsection, we will show that

χsp(Afe) = O(h−2).
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Proposition 4.8 (ηT Mη ∼ hd ηT η).

Let Th be a quasi-uniform family of triangulations of Ω̄. Then there exist positive constants

C1 and C2 such that for each vh ∈ Vh,

C1 hd |η|2 ≤ ‖vh‖2 ≤ C2 hd |η|2, vh =
Nh∑

j=1

ηjϕj .

Proof. Since Th is quasi-uniform, it is enough to show that for any element K

C∗
1 hd

K

M∑

j=1

η2
j ≤

∫

K
v2
hdx ≤ C∗

2hd
K

M∑

j=1

η2
j ,

where M is the number of degrees of freedom associated with K.

For the reference element K̂, set v̂ = vh ◦ TK . Then, v̂ =
∑

j ηjϕj . Note from (4.19) that

∫

K̂
v̂2 =

∑

j

η2
j

∫

K̂
ϕ̂2

j + 2
∑

i<j

ηiηj

∫

K̂
ϕ̂iϕ̂j

=
d !meas(K̂)

(2 + d)!


2

∑

j

η2
j + 2

∑

i<j

ηiηj


 =

d !meas(K̂)
(2 + d)!


∑

j

η2
j +

( ∑

j

ηj

)2

 .

Thus we have

C∗∗
1

M∑

j=1

η2
j ≤

∫

K̂
v̂2dx̂ ≤ C∗∗

2

M∑

j=1

η2
j .

Using the last inequality together with the fact that

c hd
K ≤ | det BK | = meas(K)

meas(K̂)
≤ C hd

K

and ∫

K
v2
h =

∫

K
(v̂ ◦ T−1

K )2 = |det BK |
∫

K̂
v̂2,

we have the conclusion.

Proposition 4.9 (Inverse Inequality for piecewise polynomials).

Let Th be a quasi-uniform family of triangulations of Ω̄. Then there exist positive constants

C3 such that for each vh ∈ Vh,

‖∇vh‖2 ≤ C3 h−2 ‖vh‖2.

Proof. Since Pk(K̂) is finite dimensional, we have by the equivalence of norms that

‖∇v̂‖2
0,K̂

≤ ‖v̂‖2
1,K̂

≤ C ‖v̂‖2
0,K̂

∀ v̂ ∈ Pk(K̂).
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With v̂ = vh ◦ TK , we have from Proposition 2.6 and 2.7 that

‖∇vh‖2
0,K ≤ C‖B−1

K ‖2 · | detBK | · ‖∇v̂‖2
0,K̂

≤ C‖B−1
K ‖2 · |detBK | · ‖v̂‖2

0,K̂

≤ C‖B−1
K ‖2 · ‖vh‖2

0,K ≤ C

(ρK)2
‖vh‖2

0,K .

Since Th is a quasi-uniform family of triangulations, we have the conclusion.

Writing vh =
∑

j ηjϕj , we have

(Afeη, η)
|η|2 =

A(vh, vh)
|η|2 .

Since A(·, ·) is continuous and coercive,

α C1 hd ≤ (Afeη,η)
|η|2 ≤ γ C2 hd (1 + C3 h−2).

Assume that Afe is symmetric and positive definite. Then, we have

α C1 hd ≤ λ ≤ γ C2 hd (1 + C3 h−2), for any eigenvalue λ of Afe.

Hence, the condition number of Afe has the following bounds:

χsp(Afe) =
λmax(Afe)
λmin(Afe)

≤ γC2

αC1
(1 + C3h

−2) = O(h−2).

The spectrum of A(·, ·) is defined as the set of µ ∈ R such that there exists an eigenfunction

ωh ∈ Vh, ωh 6= 0, satisfying

A(ωh, vh) = µ (ωh, vh) ∀ vh ∈ Vh.

Thus, if (µ, ωh) is an eigenpair, then we have

α ≤ A(ωh, ωh)
‖ωh‖2

= µ ≤ γ
‖ωh‖2

1

‖ω‖2
≤ γ (1 + C3 h−2).

The convergence properties of Conjugate Gradient iteration is reflected by the estimate

|ek|A ≤ 2

(√
χsp(A)− 1√
χsp(A) + 1

)k

|e0|A,

where ek denotes the error of k-iterations and |e|2A = (Ae, e) denotes the vector norm.
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4.9 Finite Elements with Interpolated Boundary Conditions

Let Ω ⊂ R2 be a bounded domain with smooth boundary, and Th be a triangulation of Ω, where

each triangle at the boundary has at most one curved side.

Assume that there exists ρ > 0 such that for each triangle K ∈ Th we can find two concentric

circular discs D1 and D2 such that

D1 ⊂ K ⊂ D2 and
diamD2

diamD1
≤ ρ.

Using the proof of Lemma 4.5.3 in [Brenner and Scott] that

(4.20) ‖φ‖W k−1∞ (D2) ≤ Ck,ρ (diamD2)1−k ‖φ‖H1(D1) ∀φ ∈ Pk−1.

We consider the Lobatto quadrature formula. Let the polynomial Lk(ξ) of degree k be defined

by

Lk(x) =
(

d

dx

)k−2 (
x(1− x)

)k−1
.

Lk(ξ) has k distinct roots 0 = ξ0 < ξ1 < · · · < ξk−1 = 1.

For each j (0 ≤ j ≤ k − 1), let Pj be the Lagrange interpolating polynomial of degree k − 1

such that Pj(ξi) = δij , and let

wj =
∫ 1

0
Pj(x)dx.

Lemma 4.10. We have
∫ 1

0
P (x)dx =

k−1∑

j=0

wj P (ξj) ∀P ∈ P2k−3.

Corollary 4.11. We have
∣∣∣∣∣∣

∫ h

0
f(x)dx− h

k−1∑

j=0

wj f(hξj)

∣∣∣∣∣∣
≤ Ck h2k−1 ‖f (2k−2)(x)‖L∞(0,h) ∀ f ∈ C2k−2([0, h]).

For each boundary edge

e = {x(s) : s ∈ [se, se + he], s is arc elngth},

let the boundary nodes be x(se + heξj), j = 0, · · · , k − 1.

Define the finite element space Vh:

Vh = {v ∈ C0(Ω̄) : v|K ∈ Pk−1 and v vanishes at the boundary nodes}.

Let

a(u, v) = (∇u,∇v) for u, v ∈ V := H1
0 (Ω).
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We consider the variational problem

find u ∈ V : a(u, v) = (f, v) ∀ v ∈ V,

and the discrete variational problem

find uh ∈ Vh : a(uh, v) = (f, v) ∀ v ∈ Vh.

By Green’s Theorem, we have that for any w ∈ Vh,

a(u− uh, w) = a(u,w)− (f, w) = (−∆u,w) +
∫

∂Ω
(n · ∇u) w ds− (f, w)

=
∫

∂Ω
(n · ∇u) w ds.

Lemma 4.12. Let K be a triangle with a curved edge e. Assume that u ∈ W 2k−1∞ (K), and

w ∈ Pk−1 vanishes at the Lobatto nodes along e. Then we have
∣∣
∫

e
(n · ∇u) w ds

∣∣ ≤ Ck,ρ h2k−1
e (diamD2)1−k ‖u‖W 2k−1∞ (K) · ‖w‖H1(K),

where he = length of e.

Proof. Let s denote arc length. Using parameterization x(s), 0 ≤ s ≤ he, and (4.20) yields
∣∣∣∣
∫

e
(n · ∇u) w ds

∣∣∣∣ =
∣∣∣∣
∫ he

0

(
n · ∇u

)
(x(s))w(x(s)) ds

∣∣∣∣
≤ Ck h2k−1

e ‖n · ∇u‖W 2k−2∞ (K) ‖w‖W k−1∞ (K)

≤ Ck,ρ h2k−1
e (diamD2)1−k ‖u‖W 2k−1∞ (K) ‖w‖H1(K).

Lemma 4.13. Assume that u ∈ W 2k−1∞ (Ω). For small h and fixed k, we have

sup
w∈Vh\{0}

|a(u− uh, w)|
‖w‖1

≤ Cρ hk− 1
2 ‖u‖W 2k−1∞ (Ω).

Lemma 4.14. We have

β ‖v‖1 ≤ |v|1 +
∣∣∣∣
∫

∂Ω
v

∣∣∣∣ ∀ v ∈ H1(Ω).

Lemma 4.15. For h small enough, we have

a(v, v) ≥ γ ‖v‖2
1 ∀ v ∈ Vh.

Theorem 4.16. Assume that u ∈ W 2k−1∞ (Ω) and (4.20) holds for a ρ > 0 independent of h.

Then we have the following error estimate

‖u− uh‖1 ≤ Cρ hk−1 ‖u‖W 2k−1∞ (Ω).

The last estimate also holds for u ∈ Hk(Ω).
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4.10 Isoparametric Polynomial Approximation

Let Ω be a smooth domain in Rd and let Ωh be a base polyhedral domain which is close to Ω.

Let Ṽh be a base finite element space defined on Ωh. (e.g., Pk−1 finite element space on Ωh.)

We construct a one-to-one continuous mapping

Fh : Ωh → Rn where each component Fh,i ∈ Ṽh.

The resulting space

Vh :=
{

v
(
F−1

h (x)
)

: x ∈ Fh(Ωh), v ∈ Ṽh

}

is called an isoparametric-equivalent finite element space.

Let Th denote corresponding triangulations consisting of simplices of size at most h. Then,

it is possible to construct piecewise polynomial mappings, Fh, of degree k − 1 which

a) equal the identity map away from the boundary of Ωh,

b) have the property that the distance from any point on ∂Ω to the closet point on ∂Fh(Ωh)

is at most C hk,

c) ‖JFh
‖W k∞(Ωh) ≤ C and ‖J−1

Fh
‖W k∞(Ωh) ≤ C, independent of h.

Note that Ω is only approximated by Fh(Ωh), not equal.

We assume that there is an auxilliary mapping F : Ωh → Ω satisfying the above three

conditions a), b), c), and that Fh,i = IhFi for each component of the mapping.

Define

ah(v, w) =
∫

Fh(Ωh)
∇v · ∇w dx

and define Φh : Ω → Fh(Ωh) by Φh(x) = Fh

(
F−1(x)

)
. Then, by using chain rule we can write

ah(v, w) =
∫

Ω

(
JΦh

(x)−T∇v̂(x)
)
·
(

JΦh
(x)−T∇ŵ(x)

)
| detJΦh

(x)| dx,

where v̂(x) := v (Φh(x)) for any function v defined on Fh(Ωh).

The variational problem is to find uh ∈ Vh such that

ah(uh, vh) = (f, v)Fh(Ωh) ∀ vh ∈ Vh.

Theorem 4.17. For h sufficiently small, we have the following error estimate:

‖u− ûh‖1,Ω ≤ C hk−1

(
‖u‖k,Ω + ‖f‖W 1∞(Ω)

)
,

where ûh(x) := uh (Φh(x)).

This can be improved w.r.t. the norm on f :

‖u− ûh‖1,Ω ≤ C hk−1

(
‖u‖k,Ω + ‖f‖k−2,Ω

)
,
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5 Mixed Method

5.1 Abstract Formulation

Let X and M be two Hilbert spaces, with norms ‖ · ‖X and ‖ · ‖M , respectively. Let X ′ and M ′

be their dual spaces, and introduce two bilinear forms

a(·, ·) : X ×X → R, b(·, ·) : X ×M → R

which are continuous:

|a(w,v)| ≤ γ ‖w‖X ‖v‖X , |b(w, q)| ≤ δ ‖w‖X ‖q‖M

for each w,v ∈ X and q ∈ M .

Consider the following constrained problem : find (u, p) ∈ X ×M such that

a(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ X,

b(u, q) = 〈g, q〉 ∀ q ∈ M,
(5.1)

where f ∈ X ′ and g ∈ M ′, and 〈·, ·〉 denotes the duality pairing between X ′ and X or M ′ and

M .

We associate to a(·, ·) and b(·, ·) the operators A ∈ L(X;X ′) and B ∈ L(X;M ′) defined by

〈Aw,v〉 = a(w,v) ∀w,v ∈ V,

〈Bv, q〉 = b(v, q) ∀v ∈ V, q ∈ M.

Denote by B′ ∈ L(M ;X ′) the adjoint operator of B:

〈B′q,v〉 = 〈Bv, q〉 = b(v, q) ∀v ∈ V, q ∈ M.

Thus we can write (5.1) as : find (u, p) ∈ X ×M such that

Au + B′p = f in X ′,

Bu = g in M ′.
(5.2)

Define the affine manifold

Xg := {v ∈ X : b(v, q) = 〈g, q〉 ∀ q ∈ M}.

Clearly X0 = ker B is a closed subspace of X. We can now associate to problem (5.1) the

following problem:

(5.3) find u ∈ Xg : a(u,v) = 〈f ,v〉 ∀v ∈ X0.
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That is, if (u, p) is a solution to (5.1), then u is a solution to (5.3).

We will introduce suitable conditions ensuring that the converse is also true, and that the

solution to (5.3) does exist and is unique, thus construction a solution to (5.1).

Denote by X0
p the polar set of X0,

X0
p := {µ ∈ X ′ : 〈µ,v〉 = 0 ∀v ∈ X0}.

Since X0 = ker B, X0
p = (ker B)p. Let us decompose X as follows:

X = X0 ⊕ (X0)⊥.

B is not an isomorphism form X onto M ′, as in general ker B= X0 6= {0}.
We are going to introduce a condition which is equivalent to the fact that B is indeed an

isomorphism from (X0)⊥ onto M ′ (and moreover B′ is an isomorphism form M onto X0
p ).

Proposition 5.1 (Compatibility Condition). The following statements are equivalent:

a) there exists a constant β∗ > 0 such that

(5.4) ∀ q ∈ M ∃v ∈ X, v 6= 0 : b(v, q) ≥ β∗ ‖v‖X ‖q‖M ;

b) B′ is an isomorphism from M onto X0
p and Inf-Sup Condition holds

(5.5) ‖B′q‖X′ := sup
06=v∈X

〈B′q,v〉
‖v‖X

≥ β∗ ‖q‖M ∀ q ∈ M ;

c) B is an isomorphism from (X0)⊥ onto M ′ and

(5.6) ‖Bv‖M ′ := sup
06=q∈M

〈Bv, q〉
‖q‖M

≥ β∗ ‖v‖X ∀v ∈ (X0)⊥.

Proof. Clearly (5.4) and (5.5) are equivalent. We have only to prove that B′ is an isomorphism

from M onto X0
p . Clearly (5.5) shows that B′ is an one-to-one operator from M onto its

range R(B′), with a continuous inverse. Thus R(B′) is a closed subspace of X ′. It remains

to be proven that R(B′) = X0
p . Applying the Closed Range theorem gives

R(B′) = (ker B)p = X0
p .

Hence, a) and b) are equivalent.

c.f.) N (B′) = R(B)p, N (B) = R(B′)p, N (B′)p = R(B), N (B)p = R(B′).

For each µ ∈ (
(X0)⊥

)′ we associate µ̂ ∈ X ′ satisfying

〈µ̂,v〉 = 〈µ, P⊥v〉 ∀v ∈ X,
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where P⊥ is the orthogonal projection onto (X0)⊥. Since P⊥v = 0 for v ∈ X0, µ̂ ∈ X0
p .

Using the fact that

‖µ̂‖X′ = sup
v∈X

〈µ̂,v〉
‖v‖X

= sup
v∈X

〈µ, P⊥v〉
‖v‖X

≤ sup
v∈X

〈µ, P⊥v〉
‖P⊥v‖X

= sup
v∈(X0)⊥

〈µ,v〉
‖v‖X

= ‖µ‖(
(X0)⊥

)′

and

‖µ‖(
(X0)⊥

)′ = sup
v∈(X0)⊥

〈µ,v〉
‖v‖X

= sup
v∈(X0)⊥

〈µ, P⊥v〉
‖v‖X

= sup
v∈(X0)⊥

〈µ̂,v〉
‖v‖X

≤ sup
v∈X

〈µ̂,v〉
‖v‖X

= ‖µ̂‖X′

yields that µ → µ̂ is an isometric bijection from
(
(X0)⊥

)′ onto X0
p . Hence, X0

p can be

identified with the dual of (X0)⊥. As consequence, B′ is an isomorphism from M onto(
(X0)⊥

)′ satisfying

‖(B′)−1‖L(X0
p ;M) ≤

1
β∗

if and only if B is an isomorphism from (X0)⊥ onto M ′ satisfying

‖B−1‖L(M ′;(X0)⊥) ≤
1
β∗

.

This proof is now complete.

Theorem 5.2. Assume that the bilinear form a(·, ·) is continuous and coercive on X0:

a(v,v) ≥ α ‖v‖2
X ∀v ∈ X0.

Assume further that the bilinear form b(·, ·) is continuous and the compatibility condition

(5.4) holds.

Then, for each (f , g) ∈ X ′ × M ′ there exists a unique solution u to (5.3), and a unique

p ∈ M such that (u, p) is the unique solution to (5.1).

Furthermore, the map (f , g) → (u, p) is an isomorphism from X ′ ×M ′ onto X ×M , and

‖u‖X ≤ 1
α

(
‖f‖X′ +

α + γ

β∗
‖g‖M ′

)

‖p‖M ≤ 1
β∗

(
α + γ

α
‖f‖X′ +

γ(α + γ)
αβ∗

‖g‖M ′

)
.

Proof. Uniqueness of the solution to (5.3) is a straightforward consequence of the coerciveness.

From (5.6), there exists a unique u0 ∈ (X0)⊥ such that Bu0 = g and

‖u0‖X ≤ 1
β∗
‖g‖M ′ .

Thus, we rewrite (5.3) as:

(5.7) find ũ ∈ X0 : a(ũ,v) = 〈f ,v〉 − a(u0,v) ∀v ∈ X0,
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and define the solution u ∈ Xg to (5.3) as u = ũ + u0. The existence of a unique solution

to (5.7) is assured by Lax-Milgram lemma, and moreover

‖ũ‖X ≤ 1
α

(
‖f‖X′ + γ ‖u0‖X

)
.

Let us now consider problem (5.1). As (5.7) can be written in the form

〈Au− f ,v〉 = 0 ∀v ∈ X0,

we have (Au − f) ∈ X0
p . Moreover, from (5.5) we can find a unique p ∈ M such that

Au− f = −B′p, i.e., (u, p) is a solution to (5.1) and satisfies

‖p‖M ≤ 1
β∗
‖Au− f‖X′ .

Each solution (u, p) to (5.1) gives a solution u to (5.3), also for problem (5.3) uniqueness

thus holds. Finally, summing up inequalities the proof is completed.

The approximation of the abstract constrained problem (5.1) is as follows. Let Xh and Mh

be finite dimensional subspace of X and M , respectively. The discrete constrained problem is

to: find (uh, ph) ∈ Xh ×Mh such that

a(uh,v) + b(v, ph) = 〈f ,v〉 ∀v ∈ Xh,

b(uh, q) = 〈g, q〉 ∀ q ∈ Mh.
(5.8)

Define the space

Xg
h := {vh ∈ Xh : b(vh, q) = 〈g, q〉 ∀q ∈ Mh}.

Since Mh is in general a proper subspace of M , Xg
h * Xg.

The finite dimensional problem corresponding to (5.3) is to

(5.9) find uh ∈ Xg
h : a(uh,v) = 〈f ,v〉 ∀v ∈ Xg

h.

5.2 Analysis of Stability and Convergence

Theorem 5.3 (Stability). Assume that the bilinear form a(·, ·) is continuous and coercive on

X0
h:

a(vh,vh) ≥ αh ‖vh‖2
X ∀vh ∈ X0

h.

Assume further that the bilinear form b(·, ·) is continuous and the following compatibility

condition holds: there exists a constant βh > 0 such that

(5.10) ∀ qh ∈ Mh ∃vh ∈ Xh, vh 6= 0 : b(vh, qh) ≥ βh ‖vh‖X ‖qh‖M .
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Then, for each (f , g) ∈ X ′ × M ′ there exists a unique solution (uh, ph) to (5.8) which

satisfies

‖uh‖X ≤ 1
αh

(
‖f‖X′ +

αh + γ

βh
‖g‖M ′

)

‖ph‖M ≤ 1
βh

(
αh + γ

αh
‖f‖X′ +

γ(αh + γ)
αhβh

‖g‖M ′

)

where both αh and βh are independent of h, this is a stability result for (uh, ph).

The proof is similar to the preceding Theorem. But, note that X0
h * X0 and that the compati-

bility condition (5.4) does not imply (5.10) since Xh is a proper subspace of X.

Theorem 5.4 (Convergence). Let the assumptions of two preceding Theorems be satisfied.

Then, we have the error estimates

‖u− uh‖X ≤
(

1 +
γ

αh

)
inf

v∗h∈Xg
h

‖u− v∗h‖X +
δ

αh
inf

qh∈Mh

‖p− qh‖M ,

‖p− ph‖M ≤ γ

βh

(
1 +

γ

αh

)
inf

v∗h∈Xg
h

‖u− v∗h‖X +
(

1 +
δ

βh
+

γδ

αhβh

)
inf

qh∈Mh

‖p− qh‖M .

Moreover, the following estimate holds

inf
v∗h∈Xg

h

‖u− v∗h‖X ≤
(

1 +
δ

βh

)
inf

vh∈Xh

‖u− vh‖X .

The convergence is optimal if both αh and βh are independent of h.

Proof. Take vh ∈ Xh, v∗h ∈ Xg
h and qh ∈ Mh. By subtracting (5.8)1 from (5.1)1 it follows

a(uh − v∗h,vh) + b(vh, ph − qh) = a(u− v∗h,vh) + b(vh, p− qh).

Choosing vh = (uh − v∗h) ∈ X0
h, we have

‖uh − v∗h‖X ≤ 1
αh

(
γ‖u− v∗h‖X + δ‖p− qh‖M

)
,

and consequently the first estimate of the theorem holds true.

For each qh ∈ Mh, we find

‖ph − qh‖M ≤ 1
βh

sup
06=vh∈Xh

b(vh, ph − qh)
‖vh‖X

.

By subtracting (5.8)2 from (5.1)2 it follows

b(vh, ph − qh) = a(u− uh,vh) + b(vh, p− qh).
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Combining this with the last inequality and using the continuities, we obtain

‖ph − qh‖M ≤ 1
βh

(
γ‖u− uh‖X + δ‖p− qh‖M

)

which yields the second estimate of the theorem.

For each vh ∈ Xh, from (5.10) and Proposition 5.1 (we similarly show that there exists an

isomorphism Bh from (X0
h)⊥ to M ′

h which has the similar properties in Proposition 5.1)

there exists a unique wh ∈ (X0
h)⊥ such that

〈Bhwh, qh〉 = 〈Bh(u− vh), qh〉 or b(wh, qh) = b(u− vh, qh) ∀ qh ∈ Mh

and

‖wh‖X ≤ 1
βh

sup
0 6=qh∈Mh

〈Bhwh, qh〉
‖qh‖M

≤ δ

βh
‖u− vh‖X .

Setting v∗h := wh + vh, we have v∗h ∈ Xg
h as b(v∗h, qh) = b(u, qh) = 〈g, qh〉 for all qh ∈ Mh.

Furthermore,

‖u− v∗h‖X ≤ ‖u− vh‖X + ‖wh‖X ≤
(

1 +
δ

βh

)
‖u− vh‖X .

Since vh is arbitrary, this completes the proof.

(Spurious Modes). The compatibility condition (5.10) is necessary to achieve uniqueness of

ph. Actually it can be written as:

if qh ∈ Mh and b(vh, qh) = 0 for each vh ∈ Xh, then qh = 0.

Thus, if (5.10) is not satisfied, there exists q∗h ∈ Mh, q∗h 6= 0, such that

b(vh, q∗h) = 0 ∀vh ∈ Xh.

As a consequence, if (uh, ph) solves (5.8), also (uh, ph + τq∗h), τ ∈ R is a solution to the

same problem.

Any such element q∗h is called spurious (or parasitic) mode, as it cannot be detected by

the numerical problem (5.8).
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5.3 How to verify the uniform compatibility condtion

Lemma 5.5 (Fortin). Assume that the compatibility condition (5.4) is satisfied, and, more-

over, that there exists an operator rh : X → Xh such that

(i) b
(
v − rh(v), qh

)
= 0 ∀v ∈ X, ∀ qh ∈ Mh

(ii) ‖rh(v)‖X ≤ C∗ ‖v‖X ∀v ∈ X,

where C∗ > 0 doesn’t depend on h.

Then, the compatibility condition (5.10) is satisfied with β = β∗/C∗.

For the connected domain Ω, let X = H1
0 (Ω)d and M = L2

0(Ω), and let

V = {v ∈ X : ∇ · v = 0}.

Then, V is a closed subspace of H1
0 (Ω)d and we have the decomposition:

H1
0 (Ω)d = V ⊕ V ⊥, V ⊥ is orthogonal of V in H1

0 (Ω)d.

From the arguments in p. 24 of [GR], we have

a) the operator ∇ L2
0(Ω) → Vp is an isomorphism;

b) the operator ∇· : V ⊥ → L2
0(Ω) is an isomorphism

where Vp = {f ∈ H−1(Ω)d : 〈f ,v〉 ∀v ∈ V } denotes the polar set of V .

For the bilinear forms

a(w,v) = ν (∇w,∇v) and b(v, q) = −(q,∇ · v), ν > 0,

we have the following result:

Lemma 5.6 (Verfürth). Let Th be a quasi-uniform family of triangulations of Ω. Assume that

Mh ⊂ H1(Ω) ∩ L2
0(Ω) and there exists β̂ > 0 such that

(5.11) ∀ qh ∈ Mh ∃vh ∈ Xh, vh 6= 0 : b(vh, qh) ≥ β̂ ‖vh‖0 ‖qh‖1.

Assume, moreover, that there exists an operator Rh : X → Xh and a constant K > 0 such

that

(5.12) ‖v −Rh(v)‖0 + h ‖v −Rh(v)‖1 ≤ K h |v|1 ∀v ∈ X.

Then, the compatibility condition (5.10) is satisfied.
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Proof. Recall the inverse inequality:

‖vh‖1 ≤ C h−1 ‖vh‖0 ∀vh ∈ Xh.

The condition (5.11) implies that

(5.13) ∀ qh ∈ Mh ∃vh ∈ Xh, vh 6= 0 : b(vh, qh) ≥ K1 h ‖vh‖1 ‖qh‖1.

Note that for each qh ∈ Mh ⊂ L2
0(Ω) there exists w ∈ V ⊥ ⊂ X = H1

0 (Ω)d such that

∇ ·w = −qh and ‖w‖1 ≤ K2 ‖qh‖0.

Thus from (5.12) we find

‖Rh(w)‖1 ≤ ‖Rh(w)−w‖1 + ‖w‖1 ≤ (1 + K)‖w‖1 ≤ K2(1 + K)‖qh‖0.

If qh is such that

‖qh‖0 ≤ KK2 h ‖qh‖1,

then (5.13) yields

b(vh, qh) ≥ K1

KK2
‖vh‖1 ‖qh‖0.

On the contrary, if

‖qh‖0 > KK2 h ‖qh‖1,

b(Rh(w), qh) = b(w, qh) + b(Rh(w)−w, qh) = (qh, qh) + b(Rh(w)−w, qh)

≥ ‖qh‖2
0 − ‖Rh(w)−w‖0 ‖qh‖1 ≥ ‖qh‖2

0 −K h |w|1 ‖qh‖1

≥ ‖qh‖2
0 −KK2 h ‖qh‖0 ‖qh‖1

≥ 1
K2(1 + K)

(
‖qh‖0 −KK2 h ‖qh‖1

)
‖Rh(w)‖1.

Combining this with (5.13), we are led to that for each qh ∈ Mh satisfying

‖qh‖0 ≤ KK2 h ‖qh‖1,

there exists zh ∈ Xh, zh 6= 0, such that

b(zh, qh) ≥ Q(h ‖qh‖1)‖zh‖1,

where

Q(ξ) := max
{

K1 ξ,
1

K2(1 + K)

(
‖qh‖0 −KK2 ξ

)}
, ξ > 0.
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We have the minimum of Q(ξ) over {ξ > 0} at ξ = ‖qh‖0/
(
K2[K1(1+K)+K]

)
and hence

(5.10) holds with β = K1

(
K2[K1(1 + K) + K]

)−1
.

The condition (5.11) has been proven to hold to some finite element spaces frequently used in the

approximation of the Stokes problem (see for instance the Taylor-Hood or Bercovier-Pironneau

elements).


